Search published articles


Showing 3 results for Statistical

H. B. Ozmen, M. Inel, S. M. Senel, A. H. Kayhan,
Volume 13, Issue 1 (3-2015)
Abstract

Seismic performance and loss assessment studies for stock of buildings are generally based on representative models due to extremely large number of vulnerable buildings. The main problem is the proper reflection of the building stock characteristics well enough by limited number of representative models. This study aims to provide statistical information of structural parameters of Turkish building stock for proper modeling using a detailed inventory study including 475 low and mid-rise RC building with 40351 columns and 3128 beams for member properties. Thirty-five different parameters of existing low and mid-rise Turkish RC building stock are investigated. An example application is given to express use of given statistical information. The outcomes of the current study and previous studies are compared. The comparison shows that the previous studies have guidance for limited number of parameters while the current study provides considerably wide variety of structural and member parameters for proper modeling.
Damilola Oyejobi,
Volume 14, Issue 8 (12-2016)
Abstract

The occurrence of wave and wind forces on tension leg platform (TLP) was assumed to be statistically independent but the intensity of wave force is a function of wind velocity because wave is a wind driven force. The focus of this paper is to study the effects of wind velocity on wave force. The contribution of steady and fluctuating wind to the response of the TLP over random wave only was also studied. Pierson Moskowitz wave and Emil Simiu wind spectra are simulated using Monte Carlo simulation. The variable submergence, drag force in Morison equation, tension fluctuation together with coupling between wind and wave contributed to the non-linearity considered in the single degree of freedom equation. The dynamic equation was solved using Newmark-Beta scheme. The statistical and power spectral density functions of the response quantities are reported. It is concluded that wind forces reduce the root mean square (RMS) tension force in the cable and thereby increased the motion responses in intact and a removed tendon TLP. The wind driven force (wave) has higher responses in severe sea states and the contribution of wind effect was suppressed due to hydrodynamic damping. The effect of the wind fluctuation is more pronounced in less severe sea state.Stochastic response of intact and a removed tendon tension leg platform to wave and wind loads


Dr. Mohammad Khasawneh,
Volume 15, Issue 7 (10-2017)
Abstract

During the entire life cycle of a pavement, highway agencies are expected to maintain adequate surface frictional properties to facilitate traction between car tires and pavement surface. Traditionally the repair method for a friction-deficient pavement surface is the application of a new surfacing layer. The monitoring and remedying practice is important however, it is a passive approach toward the problem. A more proactive approach would be to test the hot mix asphalt in the laboratory during its initial mix design stage to ensure that aggregate combinations used in the asphalt pavement will provide adequate friction over the life of the pavement. Toward this objective the polishing behavior of laboratory-prepared HMA specimens made of eight different job mix formulas has been studied in terms of friction values. In addition, a robust statistical analysis of the obtained surface friction values has also been carried out in an attempt to verify the success in developing this new asphalt polisher that is used to simulate the tire-pavement interaction. Furthermore, polishing behavior (i.e., polishing trend, rate of friction loss and absolute and percent values of decrease) were all fully investigated to capture surface frictional deterioration of HMA specimens. In conclusion, the new asphalt polisher showed a good degree of repeatability. Additionally, it has been concluded that the decrease in polish number is maximum during the first hour of polishing. With the passage of time the drop in friction decreases and stabilizes.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb