Search published articles


Showing 2 results for Unsaturated Soils

Hamed Farshbaf Aghajani, Abbas Soroush, Piltan Tabatabaie Shourijeh,
Volume 9, Issue 4 (12-2011)
Abstract

Evaluating the rate and maximum height of capillary rise is of prime interest in unsaturated soil mechanics. Antecedent solutions

to this problem have dwelled mostly on determining the maximum capillary rise height, overlooking moisture and suction changes

in the capillary region. A comprehensive improved solution for the capillary rise of water in soils is presented. Salient features of

the formulation including consideration of initial soil suction (if any) prior to capillary rise, and determination of water content

variation in the capillary region are elaborately discussed. Results reveal that suction head variation within the capillary region

is non-linear, where the curvature decreases as water rises to higher elevations. The solution is verified and compared with

existing solutions, by means of two sets of experimental data available in the literature. The comparison suggests that the

improved formulation is more accurate and versatile than previous solutions for capillary rise.


Junxin Liu, Chunhe Yang, Jianjun Gan, Yutian Liu, Wei Liu, Qiang Xie,
Volume 15, Issue 6 (9-2017)
Abstract

Abstract: Rainfall is an important triggering factor influencing the stability of soil slope. Study on some influences of the rainfall on the instability characteristics of unsaturated soil embankment slope has been conducted in this paper. Firstly, based on the effective stress theory of unsaturated soil for single variable, fluid-solid coupling constitutive equations were established. Then, a segment of red clay embankment slope, along a railway from Dazhou to Chengdu, damaged by rainfall, was theoretical and numerical-simulating researched by considering both the runoff-underground seepage and the fluid-solid coupling. The failure characteristics of the embankment slope and the numerical simulation results were in excellent agreement. In the end, a sensitivity analysis of the key factors influencing the slope stability subjected to rainfall was performed with emphasis on damage depth as well as infiltration rainfall depth. From the analysis in this paper, it was concluded that the intensity of rainfall, rainfall duration and long-term strength of soil have most effect on slope stability when subjected to rainfall. These results suggest that the numerical simulation can be used for practical applications.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb