Search published articles


Showing 13 results for Crack

P. Ghoddousi, A.m. Raiss Ghasemi, T. Parhizkar,
Volume 5, Issue 4 (12-2007)
Abstract

Plastic shrinkage is one of the most important parameter which must be considered in hot weather concreting. If plastic shrinkage is not prevented, cracking will be significant, especialy if silica fume is used in the mix. In this paper, the effect of silica fume in bleeding and evaporation was investigated in laboratory. The results showed that in restrained shrinkage, beside relative humidity, temperature and wind velocity, sun rediation also is very important factor in evaporation rate. It is found that under solar radition condition, the evaporation was much larger than the estimated value in ACI 305 Nomogram. The rate of evaporaion under solar radiation was about two folds of evaporation rate under shade condition. The results showed that in terms of crack initiation time, crack width and total cracking area, concrete containing silica fume is more severe than concrete with no silica fume. Reduction of water cement ratio in concrete with silica fume makes the concrete more sensitive in cracking. The results of this project also showed that the severity of the cracking is not related only to rate of bleeding but all environmental factors including like sun radiation or shading and also mix compositions have important roles.
S.h. Ebrahimi, S. Mohammadi, A. Asadpoure,
Volume 6, Issue 3 (9-2008)
Abstract

A new approach is proposed to model a crack in orthotropic composite media using the extended finite element method (XFEM). The XFEM uses the concept of partition of unity in addition to meshless basic idea of approximating a field variable by its values at a set of surrounding nodes. As a result, higher order approximations can be designed with the same total number of degrees of freedom. In this procedure, by using meshless based ideas, elements containing a crack are not required to conform to crack edges. Therefore mesh generating is performed without any consideration of crack conformations for elements and the method has the ability of extending the crack without any remeshing. Furthermore, the type of elements around the cracktip is the same as other parts of the finite element model and the number of nodes and consequently degrees of freedom are reduced considerably in comparison to the classical finite element method. Developed orthotropic enrichment functions are further modified to enable modeling isotropic problems.
Mahmood R. Abdi, Ali Parsapajouh, Mohammad A. Arjomand,
Volume 6, Issue 4 (12-2008)
Abstract

Clay soils and their related abnormal behavior such as excessive shrinkage, swelling, consolidation settlement and cracking on drying has been the subject of many investigations. Previous studies mainly evaluated the effects of additives such as lime, cement and sand on these characteristics. Initial results indicated that the soil characteristics were improved. However, reportedly in many cases, these additives resulted in a decrease in plasticity and increase in hydraulic conductivity. As a result, there has been a growing interest in soil/fiber reinforcement. The present investigation has focused on the impact of short random fiber inclusion on consolidation settlement, swelling, hydraulic conductivity, shrinkage limit and the development of desiccation cracks in compacted clays. To examine the possible improvements in the soil characteristics, samples consisting of 75% kaolinite and 25% montmorillonite were reinforced with 1, 2, 4 and 8 percent fibers as dry weight of soil with 5, 10 and 15mm lengths. Results indicated that consolidation settlements and swelling of fiber reinforced samples reduced substantially whereas hydraulic conductivities increased slightly by increasing fiber content and length. Shrinkage limits also showed an increase with increasing fiber content and length. This meant that samples experienced much less volumetric changes due to desiccation, and the extent of crack formation was significantly reduced.
A. Khodaii, Sh. Fallah,
Volume 7, Issue 2 (6-2009)
Abstract

An experimental program was conducted to determine the effects of geosynthetic reinforcement on mitigating reflection cracking in asphalt overlays. The objectives of this study were to asses the effects of geosynthetics inclusion and its placement location on the accumulation of permanent deformation. To simulate an asphalt pavement overlaid on top of a crack in a concrete or asphalt pavement, an asphalt mixture specimen was placed on top of two discontinuous concrete or asphalt concrete blocks with 100 mm height. Four types of specimens were prepared with respect to the location of geogrid: (I) Unreinforced samples, which served as control specimen, (II) Samples with geogrid embedded on the concrete or asphalt concrete block, (III) Samples with geogrid embeded one-thired depth of asphalt concrete from bottom, (IV) Samples with geogrid embedded in the middle of the asphalt beam. Each specimen was then placed on the rubber foundation in order to be tested. Simulated- repeated loading was applied to the asphalt mixture specimens using a hydraulic dynamic loading frame. Each experiment was recorded in its entirety by a video camera to allow the physical observation of reflection crack formation and propagation. This study revealed that geosynthetic reinforced specimens exhibited resistance to reflection cracking. Placing the geogrid at the one- third depth of overlay thickness had the maximum predicted service life. Results indicate a significant reduction in the rate of crack propagation and rutting in reinforced samples compared to unreinforced samples.
M. Mazloom ,
Volume 8, Issue 3 (9-2010)
Abstract

 According to the Iranian code of practice for seismic resistant design of buildings, soft storey phenomenon happens in a storey when the lateral stiffness of the storey is lower than 70% of the stiffness of the upper storey, or if it is lower than 80% of the average stiffness of the three upper stories. In the combined structural systems containing moment frames and shear walls, it is possible that the shear walls of the lower stories crack however, this cracking may not occur in the upper stories. The main objective of this research is to investigate the possibility of having soft storey phenomenon in the storey, which is bellow the uncracked walls. If the tension stresses of shear walls obtained from ultimate load combinations exceed the rupture modulus of concrete, the walls are assumed to be cracked. For calculating the tension stresses of shear walls in different conditions, 10 concrete structures containing 15 stories were studied. Each of the structures was investigated according to the obligations of Iranian, Canadian, and American concrete building codes. Five different compressive strengths of 30, 40, 50, 60, and 70 MPa were assumed for the concrete of the structures. In other words, 150 computerized analyses were conducted in this research. In each analysis, 5 load combinations were imposed to the models. It means, the tension stresses of the shear walls in each storey, were calculated 750 times. The average wall to total stiffness ratios of the buildings were from 0.49 to 0.95, which was quite a wide range. The final conclusion was that the soft storey phenomenon did not happen in any of the structures investigated in this research. 


Afshin Firouzi, Ali Reza Rahai,
Volume 9, Issue 3 (9-2011)
Abstract

Corrosion of reinforcement due to frequently applied deicing salts is the major source of deterioration of concrete bridge decks, e.g. severe cracking and spalling of the concrete cover. Since crack width is easily recordable in routine visual inspections there is a motivation to use it as an appropriate indicator of condition of RC bridge elements in decision making process of bridge management. While few existing research in literature dealing with spatial variation of corrosion-induced cracking of RC structures is based on empirical models, in this paper the extent and likelihood of severe cracking of a hypothetical bridge deck during its lifetime is calculated based on a recently proposed analytical model for corrosion-induced crack width. Random field theory has been utilized to account for spatial variations of surface chloride concentration, as environmental parameter, and concrete compressive strength and cover depth as design parameters. This analysis enables to track evolution of cracking process, spatially and temporally, and predict the time for the first repair of bridge deck based on acceptable extent of cracked area. Furthermore based on a sensitivity analysis it is concluded that increasing cover depth has a very promising effect in delaying corrosion phenomenon and extension of the service life of bridge decks.


R. Ahmadii, P. Ghoddousi, M. Sharifi,
Volume 10, Issue 4 (12-2012)
Abstract

The main objective of this study is to drive a simple solution for prediction of steel fiber reinforced concrete (SFRC) behavior

under four point bending test (FPBT). In this model all the force components at the beam section (before and after cracking)

are formulated by applying these assumptions: a bilinear elastic-perfectly plastic stress-strain response for concrete behavior

in compression, a linear response for the un-cracked tension region in a concrete constitutive model, and an exponential

relationship for stress-crack opening in the crack region which requires two parameters.Then the moment capacity of the critical

cracked section is calculated by applying these assumptions and satisfying equilibrium lawat critical cracked section. After that,

parametric studies have been done on the behavior of SFRC to assess the sensitively of model. Finally the proposed model has

been validated with some existing experimental tests.The result shows that the proposed solution is able to estimate the behavior

of SFRC under FPBT with simplicity and proper accuracy.


M. Z. Kabir, A. Hojatkashani,
Volume 10, Issue 4 (12-2012)
Abstract

The aim of current study is to investigate the effect of Carbon Fiber Reinforced Polymer (CFRP) composites on the fatigue

response of reinforced concrete beams. 6 reinforced concrete (RC) beams from which 3 were retrofitted with CFRP sheets, were

prepared and subjected to fatigue load cycles. To predict and trace the failure occurrence and its growth, a small notch was

induced at the middle span in bottom surface of all RC specimens. At the certain points, strains in concrete and CFRP were

measured in each cycle. The upper limit of applied load was considered at the level of design service load of bridges. In addition,

strain measurements facilitated to the calculation of interfacial shear stresses between concrete substrate and the CFRP layer.

The variation of such stresses through load cycles has been presented and discussed. Also, a discussion on possibility of the local

debonding phenomenon resulted from such interfacial stresses was presented. Load–deflection curves, strain responses and

propagation of tensile cracks provided an insight on the performance of the CFRP strengthened beams subjected to different

cycles of fatigue loading. Variation of load-deflection curves through fatigue load cycles depicted stiffness degradation which

was discussed in the research.


M. S. Lee, T. S. Seo,
Volume 12, Issue 1 (3-2014)
Abstract

Because thin plate reinforced concrete members such as walls and slabs are greatly influenced by the drying shrinkage, cracks can occur in these members due to the restraint of the volume change caused by drying shrinkage. Therefore, the control of cracking due to drying shrinkage is very important in building construction that the thin plate members are frequently used. However, few researches of estimating shrinkage cracking in RC walls have been executed, and the cracking control design of RC walls has been conducted based on the experience rather than the quantitative design method. In this study, the practical cracking prediction method using equivalent bond-loss length Lb was proposed for the quantitative drying shrinkage crack control of RC wall. The calculated values using proposed method were compared with the experimental results from uniaxial restrained shrinkage cracking specimens and the investigative values from the field study. In general, the results of this method were close to those of the experiment and the field study.
L. Kalani Sarokolayi, B. Navayi Neya, Javad Vaseghi Amiri,
Volume 13, Issue 1 (3-2015)
Abstract

This study focuses on non-linear seismic response of a concrete gravity dam subjected to translational and rotational correlated components of ground motions including dam-reservoir interaction. For this purpose rotational components of ground motion is generated using Hong Non Lee improved method based on corresponding available translational components. The 2D seismic behavior of the dam concrete is taken into account using nonlinear fracture mechanics based on the smeared- crack concepts and the dam-reservoir system are modeled using Lagrangian-Lagrangian approach in finite element method. Based on presented formulation, Pine Flat concrete gravity dam is analyzed for different cases and results show that the rotational component of ground motion can increase or decrease the maximum horizontal and vertical displacements of dam crest. These results are dependent on the frequency of dam-reservoir system and predominant frequencies of translational and rotational components of ground motion.
Vahid Broujerdian, Mohammad T. Kazemi,
Volume 14, Issue 8 (12-2016)
Abstract

Complex nature of diagonal tension accompanied by formation of new cracks as well as closing and propagating preexisting cracks has deterred researchers to achieve an analytical and mathematical procedure for accurate predicting shear behavior of reinforced concrete, and there is the lack of a unique theory accepted universally. Shear behavior of reinforced concrete is studied in this paper based on recently developed constitutive laws for normal strength concrete and mild steel bars using nonlinear finite element method. The salient feature of these stress-strain relations is to account the interactive effects of concrete and embedded bars on each other in a smeared rotating crack approach. Implementing the considered constitutive laws into an efficient secant-stiffness based finite element algorithm, a procedure for nonlinear analysis of reinforced concrete is achieved. The resulted procedure is capable of predicting load-deformation behavior, cracking pattern, and failure mode of reinforced concrete. Corroboration with data from shear-critical beam test specimens with a wide range of properties showed the model to predict responses with a good accuracy. The results were also compared with those from the well-known theory of modified compression field and its extension called disturbed stress field model which revealed the present study to provide more accurate predictions. 


Takayoshi Maruyama, Hideaki Karasawa, Shin-Ichiro Hashimoto, Shigeyuki Date,
Volume 15, Issue 2 (3-2017)
Abstract

Pre-cast concrete products are sometimes manufactured in 2 cycles per day with one mold for the purpose of productivity improvement and so forth. In such a case, from the point of view of securing early-time strength which is required at the time of demolding, it is necessary to increase steam curing temperature and then the likelihood of temperature cracking becomes a concern. Moreover, self-compacting concrete (hereinafter refer as “SCC”) is increasingly used to which ground granulated blast-furnace slag is added, in consideration of environment surrounding a plant or operation environment. One choice then is to admix expansive agent in order to prevent cracking due to autogenous shrinkage. However, there is some possibility that high temperature curing required for 2 cycles per day production likely enhances cracking due to expansive agent admixing. In this study, the cause of cracking of large-sized pre-cast concrete products with high amount of expansive agent, in comparison of 1 cycle per day and 2 cycles per day productions was investigated.

As the result, it was confirmed that high temperature steam curing and early demolding of 2 cycles per day production promote thermal stress cracking in contrast to 1 cycle per day production, and at the same time, un expected cracking along main reinforcement is caused by excess expansion due to inappropriate curing of expansive agent.


Artur Duchaczek, Zbigniew Mańko,
Volume 15, Issue 4 (6-2017)
Abstract

The paper is presented an attempt to assess service life of steel girders in military bridges (or by-pass temporary bridges) when fatigue cracks are detected in them. A function describing the geometry of fatigue cracks, the so-called crack shape factor Y, for two different, assumed calculated models, was presented. The function was used to plot sample graphs allowing assessing the remaining service life of such structural elements or engineering structures in a simple way. This method of analyzing can be used not only for the military bridges but also for other steel structures with existing cracks. The work is also presented assessments of possible applications of two FEM calculated models using shell elements to test stress and deformation at the top part of a fatigue crack located in a web of a steel girder used in the military bridges. The results of the conducted numerical analyses were compared with the results obtained in experimental research conducted in laboratory conditions using extensometers.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb