Search published articles


Showing 2 results for Design Criteria

J. Sadeghi, P. Barati,
Volume 8, Issue 1 (3-2010)
Abstract

Current practices in railway track analysis and design are reviewed and discussed in this paper. The

mechanical behavior of railway track structure comprising of various components has not been fully understood due

to the railway track structural complexity. Although there have been some improvements in the accuracy of current

track design methods in recent decades, there are still considerable uncertainties concerning the accuracy and

reliability of the current methods. This indicates a need for a thorough review and discussion on the current practices

in the analysis and design of railway track systems. In this paper, railway design approaches proposed by various

standards along with the results of a wide range of technical researches are studied and necessary suggestions are

made for the improvement of current practices in the analysis and design of railway track


S. F. Eftekharzadeh, A. Khodabakhshi,
Volume 12, Issue 3 (9-2014)
Abstract

The previous studies show that a high percentage of traffic accidents take place in two-lane rural highways and most of which happen at horizontal curves. Meanwhile the horizontal alignment is often subject to hard topographic conditions where because of economic aspects designers are forced to design horizontal curves at grades. Vertical angle of longitudinal slope reduces the normal force of vehicle on road and friction force in tire-pavement surface will decrease. This leads to a lack of sufficient driver control over the vehicle especially if the curve with small radius is located at downgrade. In this paper, the suitability of operating speed and lateral friction coefficient as geometric design criteria for horizontal curves in downgrades are studied with regard to traffic safety and vehicle stability. The investigation of speed reduction of the vehicles running on a horizontal curve at downgrade as a response of driver behavior and the use of friction ellipse theory give the available friction coefficient. Whereas the dynamic analysis of forces applied on the vehicle in curve which is located at downgrade if combined with operating speed results in the required coefficient of lateral friction. Finally, a comparison of these two parameters based on safety evaluation criteria gives an estimation of actual safety level in designing horizontal curve at downgrades with regard to AASHTO’s data in horizontal curve design.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb