Search published articles


Showing 6 results for Effects

A. Hamidi, M. Alizadeh, S.m. Soleimani,
Volume 7, Issue 1 (3-2009)
Abstract

There are limitations in experimental studies on sand-gravel mixtures due to the small size of testing

specimens. Due to this problem, many researchers have worked on prediction of the shear strength of mixture by testing

the sandy fraction of soil alone and developed empirical relationships. Most of the previous relationships have been

determined for low surcharge pressures in which particle breakage does not affect the shear strength parameters.

However, the particle breakage affects the relationships in higher confinements. At the present study, the results of

large scale direct shear tests on sand and sand-gravel mixtures was used to investigate the shear behavior and

dilatancy characteristics in a wider range of surcharge pressures. The gravel content, relative density, surcharge

pressure and gravel grain size were considered as variables in testing program. The relationships between shear

strength characteristics of sand and sand-gravel mixtures were determined considering dilation characteristics of the

soil. In this regard, the minimum void ratio was found as a useful indirect index that relates uniquely to the critical

state friction angle independent of soil gradation. The relations between critical state or peak friction angles of the

mixture with minimum void ratio were determined as a function of surcharge pressure. The correlations could be useful

for determination of the strength parameters of sand-gravel composites by testing sandy fraction of mixture.


Alireza Mortezaei, Ali Kheyroddin,
Volume 7, Issue 1 (3-2009)
Abstract

The work presented in this paper investigates the causes of size effects in structural-concrete members. It is

based on the use of a finite-element model found to yield realistic predictions of structural-concrete behavior in all

cases investigated to date. In fact, the previous use of this model in investigations of size effects in reinforced-concrete

beams indicated that such effects reflect the dependence of load-carrying capacity on small unintended eccentricities

of the applied load and/or load-induced anisotropy, rather than, as widely considered, on fracture-mechanics

characteristics. The present work extends the scope of the above investigation so as to include the case of reinforced

concrete flanged shear walls, the behavior of which is already established experimentally. It is found that, unlike the

flanged shear walls with a height-to-length ratio larger than 2, the shear walls investigated in the present work, in

contrast with the interpretation given to recently published experimental findings, are size-effect independent.


F. Khoshnoudian, O. Nozadi,
Volume 11, Issue 2 (6-2013)
Abstract

It has been pointed out the static lateral response procedure for a base-isolated structure proposed in International Building Code (IBC) somewhat overestimates the seismic story force. That is why in the current paper, vertical distribution of base shear over the height of isolated structures considering higher mode effects under near field earthquakes is investigated. Nonlinear behavior of isolation systems cause variation of frequencies transmitted to the superstructure and consequently higher modes effects should be considered. In this study base shear distribution obtained from nonlinear dynamic analysis is compared with that achieved from IBC for assessment of the international building code. This investigation has been conducted in two parts, in order to have an appropriate base shear distribution formula for isolated structures under near field earthquakes. In the first part using three first mode shapes of isolated structure and introducing coefficient corresponding to each mode, extracted from nonlinear dynamic analysis under near field earthquakes, a new formula has been derived. In the second part, the mode shape coefficients have been obtained theoretically and consequently a new base shear distribution over the height of isolated structures including the isolation system properties under near field ground motions was proposed.
M. Poursha,
Volume 11, Issue 2 (6-2013)
Abstract

Double- unsymmetric-plan medium-rise buildings subjected to bi-directional seismic excitation are complex structures where higher-mode effects in plan and elevation are important in estimating the seismic responses using nonlinear static or pushover analysis. Considering two horizontal components of the ground motions makes the problem more intricate. This paper presents a method for nonlinear static analysis of double unsymmetric-plan low- and medium-rise buildings subjected to the two horizontal components of ground motions. To consider bi-directional seismic excitation in pushover analyses, the proposed method utilizes an iterative process until displacements at a control node (centre of mass at the roof level) progressively reach the predefined target displacements in both horizontal directions. In the case of medium-rise buildings, continuous implementation of modal pushover analyses is used to take higher-mode effects into account. To illustrate the applicability and to appraise the accuracy of the proposed method, it is applied to the 4- and 10-storey torsionally-stiff and torsionally-flexible buildings as representative of low- and medium-rise buildings, respectively. For the purpose of comparison, modal pushover analysis (MPA) is also implemented considering the two horizontal components of the ground motions. The results indicate that the proposed method and the MPA procedure can compute the seismic demands of double unsymmetric-plan low- and medium-rise buildings with reasonable accuracy however, seismic responses resulting from the proposed method deteriorate at the flexible edge of the torsionally-flexible buildings
M. Afzalirad, M. Kamalian, M. K. Jafari, A. Sohrabi-Bidar,
Volume 12, Issue 1 (1-2014)
Abstract

In this paper, an advanced formulation of time-domain, two-dimensional Boundary Element Method (BEM) with material damping is presented. Full space two-dimensional visco-elastodynamic time-convoluted kernels are proposed in order to incorporate proportional damping. This approach is applied to carry out site response analysis of viscoelastic topographic structures subjected to SV and P incident waves. Seismic responses of horizontally layered site, semi-circular canyons, slope topography and ridge sections subjected to these incident waves are analyzed in order to demonstrate the accuracy of the kernels and the applicability of the presented viscoelastic boundary element algorithm. The results show an excellent agreement with recent published results obtained in frequency domain. Also, the effects of different material damping ratios on site response are investigated.
Jafar Najafizadeh, Mohsen Kamalian, Mohammad Kazem Jafari, Naser Khaji,
Volume 12, Issue 3 (7-2014)
Abstract

In this paper, an advanced formulation of the spectral finite element method (SFEM) is presented and applied in order to carry out site response analysis of 2D topographic structures subjected to vertically propagating incident in-plane waves in time-domain. The accuracy, efficiency and applicability of the formulation are demonstrated by solving some wave scattering examples. A numerical parametric study has been carried out to study the seismic response of rectangular alluvial valleys subjected to vertically propagating incident SV waves. It is shown that the amplification pattern of the valley and its frequency characteristics depend strongly on its shape ratio. The natural frequency of the rectangular alluvial valley decreases as the shape ratio of the valley decreases. The maximum amplification ratio along the ground surface occurs at the center of the valley. A simple formula has been proposed for making initial estimation of the natural period of the valley in site effect microzonation studies.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb