Search published articles


Showing 4 results for Fly Ash

M.a. Khan, A. Usmani, S.s. Shah, H. Abbas,
Volume 6, Issue 2 (6-2008)
Abstract

In the present investigation, the cyclic load deformation behaviour of soil-fly ash layered system is

studied using different intensities of failure load (I = 25%, 50% and 75%) with varying number of cycles (N =

10, 50 and 100). An attempt has been made to establish the use of fly ash as a fill material for embankments of

Highways and Railways and to examine the effect of cyclic loading on the layered samples of soil and fly ash.

The number of cycles, confining pressures and the intensity of loads at which loading unloading has been

performed were varied. The resilient modulus, permanent strain and cyclic strength factor are evaluated from

the test results and compared to show their variation with varying stress levels. The nature of stress-strain

relationship is initially linear for low stress levels and then turns non-linear for high stress levels. The test

results reveal two types of failure mechanisms that demonstrate the dependency of consolidated undrained

shear strength tests of soil-fly ash matrix on the interface characteristics of the layered soils under cyclic

loading conditions. Data trends indicate greater stability of layered samples of soil-fly ash matrix in terms of

failure load (i) at higher number of loading-unloading cycles, performed at lower intensity of deviatoric stress,

and (ii) at lower number of cycles but at higher intensity of deviatoric stress.


Malik Shoeb Ahmad, S. Salahuddin Shah,
Volume 8, Issue 4 (12-2010)
Abstract

 Roadways have a high potential for utilization of large volume of the fly ash stabilized mixes. In this study, an attempt has been made to investigate the use of Class F fly ash mixed with lime precipitated electroplating waste sludge–cement as a base material in highways. A series of tests were performed on specimens prepared with fly ash, cement and lime precipitated waste sludge. California bearing ratio (CBR) tests were conducted for 70%-55%fly ash, 8%cement, and 30%-45%waste sludge combinations. Results show that the load bearing strength of the mix is highly dependent on the waste sludge content, cement as well as curing period. The CBR value of fly ash mixed with electroplating waste sludge and cement has been increased to manifold and results the reduction in the construction cost of the pavement. The study also encourages the use of two potentially hazardous wastes for mass scale utilization without causing danger to the environment, vegetation, human and animal lives. 


C. Gümüşer, A. Şenol,
Volume 12, Issue 2 (4-2014)
Abstract

The total coal and lignite consumption of the thermic power plants in Turkey is approximately 55 million tons and nearly 15 million tons of fly ash is produced. The remarkable increase in the production of fly ash and its disposal in an environmentally friendly manner is increasingly becoming a matter of global concern. Studies for the utilization of fly ash in Turkey are necessary to reduce environmental problems and avoid economical loss caused by the disposal of fly ash. Efforts are underway to improve the use of fly ash in several ways, with the geotechnical utilization also forming an important aspect of these efforts. An experimental program was undertaken to investigate the effects of Multifilament (MF19average) and Fibrillated (F19average) polypropylene fiber on the compaction and strength behavior of CH class soil with fly ash in different proportions. The soil samples were prepared at three different percentages of fiber content (i.e. 0.5%, 1% and 1.5% by weight of soil) and two different percentages of fly ash (i.e. 10% and 15% by weight of soil). A series of tests were prepared in optimum moisture content and laboratory unconfined compression strength tests, compaction tests and Atterberg limits test were carried out. The fiber inclusions increased the strength of the fly ash specimens and changed their brittle behavior into ductile behavior.
A.r. Hariharan, A.s. Santhi , G. Mohan Ganesh ,
Volume 13, Issue 3 (9-2015)
Abstract

This research paper presents the use of wasteful supplementary cementitious materials like fly ash and silica fume to conserve the cement used in concrete. The cement industry is one of the major producers of greenhouse gases and an energy user. In this study, Portland cement was used as a basic cementitious material. Fly ash and silica fume were used as the cement replacements by weight. The replacement levels of fly ash were 30%, 40% and 50%, and silica fume were 6% and 10%. The water binder ratio was kept constant as 0.4 and super plasticizer was added based on the required workability. Results of the binary and ternary concrete mixtures compressive strength, split tensile strength and flexural tensile strength were taken for studyup to 90 days. Based on the experimental results of compressive strength, prediction models were developed using regression analysis and coefficients were proposed to find the split tensile strength and flexural strength of binary-ternary concrete mixtures at 28 and 90 days.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb