Search published articles


Showing 5 results for Shear Wall

Kheyr Aldin A., Mortezaei A.r.,
Volume 2, Issue 1 (3-2004)
Abstract

Structural walls are used extensively in moderate- and high-rise buildings to resist lateral loads induced by earthquakes. The seismic performance of many buildings is, therefore, closely linked to the behavior of the reinforced concrete walls. The analytical models used in this paper are developed to study the push-over response of T-shaped reinforced concrete walls andinvestigate the influence of the flange walls on laterally loaded walls and nonlinear behavior of shear walls, namely strength, ductility and failure mechanisms. A layered nonlinear finite element method is used to study the behavior of T-shaped and rectangular (barbell) shear walls. This paper introduces a computer program to practically study three-dimensional characteristics of reinforced concrete wall response by utilizing layered modeling. The program is first verified bysimulated and reported experimental response of 3-D reinforced concrete shear walls. Subsequently, a study considering eighteen analytical test specimens of T-shaped and barbell shear walls is carried out. Finally, based on analytical results, a new equation for minimum ratio of shear wall area to floor-plan area is proposed.
Alireza Mortezaei, Ali Kheyroddin,
Volume 7, Issue 1 (3-2009)
Abstract

The work presented in this paper investigates the causes of size effects in structural-concrete members. It is

based on the use of a finite-element model found to yield realistic predictions of structural-concrete behavior in all

cases investigated to date. In fact, the previous use of this model in investigations of size effects in reinforced-concrete

beams indicated that such effects reflect the dependence of load-carrying capacity on small unintended eccentricities

of the applied load and/or load-induced anisotropy, rather than, as widely considered, on fracture-mechanics

characteristics. The present work extends the scope of the above investigation so as to include the case of reinforced

concrete flanged shear walls, the behavior of which is already established experimentally. It is found that, unlike the

flanged shear walls with a height-to-length ratio larger than 2, the shear walls investigated in the present work, in

contrast with the interpretation given to recently published experimental findings, are size-effect independent.


M. Mazloom ,
Volume 8, Issue 3 (9-2010)
Abstract

 According to the Iranian code of practice for seismic resistant design of buildings, soft storey phenomenon happens in a storey when the lateral stiffness of the storey is lower than 70% of the stiffness of the upper storey, or if it is lower than 80% of the average stiffness of the three upper stories. In the combined structural systems containing moment frames and shear walls, it is possible that the shear walls of the lower stories crack however, this cracking may not occur in the upper stories. The main objective of this research is to investigate the possibility of having soft storey phenomenon in the storey, which is bellow the uncracked walls. If the tension stresses of shear walls obtained from ultimate load combinations exceed the rupture modulus of concrete, the walls are assumed to be cracked. For calculating the tension stresses of shear walls in different conditions, 10 concrete structures containing 15 stories were studied. Each of the structures was investigated according to the obligations of Iranian, Canadian, and American concrete building codes. Five different compressive strengths of 30, 40, 50, 60, and 70 MPa were assumed for the concrete of the structures. In other words, 150 computerized analyses were conducted in this research. In each analysis, 5 load combinations were imposed to the models. It means, the tension stresses of the shear walls in each storey, were calculated 750 times. The average wall to total stiffness ratios of the buildings were from 0.49 to 0.95, which was quite a wide range. The final conclusion was that the soft storey phenomenon did not happen in any of the structures investigated in this research. 


Niloufar Mashhadiali, Majid Gholhaki, Ali Kheyroddin, Rouzbeh Zahiri-Hashemi,
Volume 14, Issue 8 (12-2016)
Abstract

Steel plate shear walls have long been used as a lateral load resisting system. It is composed of beam and column frame elements, to which infill plates are connected. This paper investigates the progressive collapse-resisting capacity of 50-story building 3D model of the strip model of steel plate shear wall comparing with X-braced and moment frame system based on the removing structural elements from a middle and corner of the exterior frame, in the story above the ground. The collapse behavior is evaluated by different nonlinear static and dynamic analyses using conventional analysis software. In this study, vulnerability of structures is also assessed by sensitivity index (SI) regarding the sensitivity of structures to dynamic effect induced by progressive collapse. To identify vulnerable members, resulting actions of nonlinear static analysis, considering load factor to account for dynamic effect, at the failure mode of structure at the specific performance level are compared by the factor of redundancy related to overall strength of structure, with the linear static analysis of damaged model without considering dynamic effect,. Comparing analysis results indicated that in the steel plate shear wall system, the progressive collapse resisting potential is more than X-braced and moment frame. Sensitive index of highly sensitive elements to dynamic effect stated that in the structural models, beams are more vulnerable in moment frame than X-braced frame and SPSW structure, significantly, and vulnerability of columns in X-braced frame and SPSW system is more than moment frame.


Dr. Abazar Asghari, Mr. Behnam Azimi Zarnagh,
Volume 15, Issue 5 (7-2017)
Abstract

For years, coupling shear walls have been used in  the mid to high-rise buildings as a part of lateral load- resisting system mostly, because of their ability to control the displacement of structures, Recently by changing the design codes from strength based design to performance based  design, nonlinear behavior of coupled walls became important for practical engineers, so that many researchers  are looking for ways to improve and also predict the behavior of coupled walls under severe earthquakes. This paper  presents  the results of   linear,  nonlinear static ( pushover)  and  nonlinear inelastic time-history analysis  of a 10-story  two- dimensional coupling shear wall (CSW) which is perforated with 3 different patterns which are taken from considering  the S22 stress of shell elements used for modeling shear walls,  nonlinear static analysis results confirm that perforation can increase the response modification  factor of coupled walls up to 33 percent and also the results of  linear analysis and design indicate that perforation can reduce the amount of reinforcement of coupling beams and other frame's  structural components. Also results of nonlinear inelastic time history  analysis confirm that by using perforation patterns the base shear- roof displacement hysteretic response get better and the  systems with perforation patterns can absorb more energy under severe earthquakes.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb