Search published articles


Showing 7 results for Silica Fume

Mazloom M., Ramezanian Pour A.a.,
Volume 2, Issue 1 (3-2004)
Abstract

This paper presents the long-term deformations of reinforced high-strength concrete columns subjected to constant sustained axial forces. The objective of the study was to investigate the effects of binder systems containing different levels of silica fume on time-dependent behaviour of high-strength concrete columns. The experimental part of the work focused on concrete mixes having a fixed water/binder ratio of 0.35 and a constant total binder content of 500 kg/m3. The percentages of silica fume that replaced cement in this research were: 0%, 6%, 8%, 10% and 15%. The mechanical properties evaluated in the laboratory were: compressive strength secant modulus of elasticity strain due to creep and shrinkage. The theoretical part of the work is about stress redistribution between concrete and steel reinforcement as a result of time-dependent behaviour of concrete. The technique used for including creep in the analysis of reinforced concrete columns was age-adjusted effective modulus method. The results of this research indicate that as the proportion of silica fume increased, the short-term mechanical properties of concrete such as 28-day compressive strength and secant modulus improved. Also the percentages of silica fume replacement did not have a significant influence on total shrinkage however, the autogenous shrinkage of concrete increased as the amount of silica fume increased. Moreover, the basic creep of concrete decreased at higher silica fume replacement levels. Drying creep (total creep - basic creep) was negligible in this investigation. The results of the theoretical part of this researchindicate that as the proportion of silica fume increased, the gradual transfer of load from the concrete to the reinforcement decreased and also the effect of steel bars in lowering the concrete deformation reduced. Moreover, the total strain of concrete columns decreased at higher silicafume replacement levels.
H.r. Ashrafi, A.a. Ramezanianpour,
Volume 5, Issue 3 (9-2007)
Abstract

Deterioration of concrete structures in the Gulf region is a serious problem. Penetration of Chloride ion into concrete is responsible for such early deterioration. Determination of chloride diffusion coefficient is an effective way to predict the service life of concrete structures. In order to investigate the performance of concrete mixtures in such environments, ordinary and silica fume concrete mixtures containing various water to cementitious materials ratios were used. Rapid chloride permeability test and determination of diffusion coefficient of chloride ion penetration in accordance with bulk diffusion test under laboratory conditons simulated to Persian Gulf climate, and site investigation were performed. Concentration of chloride ions in various depths of concrete specimens was measured using acid soluble chloride test method. Test results show that silica fume reduces the chloride penetration and the diffusion coefficient in concrete mixtures. Different models were made for rapid chloride test results, and diffusion coefficient, of concretes maintained in the hot and corrosive environments of the Persian Gulf. The models which were calibrated with real data obtained from the concrete structures are capable to predict the penetration and service life of concrete structures in such corrosive environments.
P. Ghoddousi, A.m. Raiss Ghasemi, T. Parhizkar,
Volume 5, Issue 4 (12-2007)
Abstract

Plastic shrinkage is one of the most important parameter which must be considered in hot weather concreting. If plastic shrinkage is not prevented, cracking will be significant, especialy if silica fume is used in the mix. In this paper, the effect of silica fume in bleeding and evaporation was investigated in laboratory. The results showed that in restrained shrinkage, beside relative humidity, temperature and wind velocity, sun rediation also is very important factor in evaporation rate. It is found that under solar radition condition, the evaporation was much larger than the estimated value in ACI 305 Nomogram. The rate of evaporaion under solar radiation was about two folds of evaporation rate under shade condition. The results showed that in terms of crack initiation time, crack width and total cracking area, concrete containing silica fume is more severe than concrete with no silica fume. Reduction of water cement ratio in concrete with silica fume makes the concrete more sensitive in cracking. The results of this project also showed that the severity of the cracking is not related only to rate of bleeding but all environmental factors including like sun radiation or shading and also mix compositions have important roles.
P. Ramadoss,
Volume 12, Issue 1 (3-2014)
Abstract

Abstract: This paper presents the influence of adding steel fibers and incorporation of silica fume on the mechanical properties of high-strength concrete. The variables investigated were steel fiber volume fraction (0 to 1.5%), silica fume replacement (5, 10 and 15%) and water-to-binder ratio (0.25, 0.30, 0.35 and 0.40). The influence of fiber content in terms of fiber reinforcing index on the compressive and splitting tensile strengths of high-strength steel fiber reinforce concrete (HSFRC) is presented. The use of silica fume increased both the compressive and splitting tensile strengths of concrete at 28 days. On the other hand, the addition of crimped steel fiber into high-strength concrete improves splitting tensile strength significantly. Based on the test data, using regression analysis, empirical expression to predict 28-day tensile strength of HSFRC in terms of fiber reinforcing index was developed and the absolute variation and integral absolute error (IAE) obtained was 3.1% and 3.3, respectively. The relationship between splitting tensile and compressive strength of SFRC was reported with regression coefficient (r) = 0.9. The experimental values of previous researchers were compared with the values predicted by the model and found to predict the values quite accurately.
R. Perumal, K. Nagamani,
Volume 12, Issue 4 (12-2014)
Abstract

An experimental study on the impact performance of silica fume concrete and steel fiber reinforced concrete at 28 days and 56 days under the action of repeated dynamic loading was carried out. In this experimental investigation, w/cm ratios of 0.4 and 0.3, silica fume replacement at 10% and 15% and crimped steel fibers with an aspect ratio of 80 were used. Results indicated that addition of fibers in high-performance concrete (HPC) can effectively restrain the initiation and propagation of cracks under stress, and enhance the impact strengths, toughness and ductility of HPC. Pulse velocity test was carried out for quality measurements of high-performance steel fiber reinforced concrete. Steel fibers were observed to have significant effect on flexural strength of concrete. The maximum first crack strength and ultimate failure strength at 28 days were 1.51 times and 1.78 times, respectively at 1.5% volume fraction to that of HPC. Based on the experimental data, failure resistance prediction model was developed with correlation coefficient (R) = 0.96 and absolute variation determined is 1.82%.
A.r. Hariharan, A.s. Santhi , G. Mohan Ganesh ,
Volume 13, Issue 3 (9-2015)
Abstract

This research paper presents the use of wasteful supplementary cementitious materials like fly ash and silica fume to conserve the cement used in concrete. The cement industry is one of the major producers of greenhouse gases and an energy user. In this study, Portland cement was used as a basic cementitious material. Fly ash and silica fume were used as the cement replacements by weight. The replacement levels of fly ash were 30%, 40% and 50%, and silica fume were 6% and 10%. The water binder ratio was kept constant as 0.4 and super plasticizer was added based on the required workability. Results of the binary and ternary concrete mixtures compressive strength, split tensile strength and flexural tensile strength were taken for studyup to 90 days. Based on the experimental results of compressive strength, prediction models were developed using regression analysis and coefficients were proposed to find the split tensile strength and flexural strength of binary-ternary concrete mixtures at 28 and 90 days.
Hasan Dilbas, Özgür Çakır, Mesut Şimşek,
Volume 15, Issue 2 (3-2017)
Abstract

The determination of the parameters of concrete (i.e., elasticity modulus, tensile strength) is very crucial task in material engineering. For this purpose, in general, structural codes propose some empirical formulas to estimate the parameters of materials and is useful for designers rather than the experimental process. However, the estimated results usually vary for different standards. Hence, this research paper aims to compare the elasticity modulus formulas considering six standards (TS 500, ACI 318M-05, CSA A23.3-04, SP 52-101-2003, EN 1992-1-1 and AS-3600-2001) with experimental elasticity modulus test results. In the evaluation of the results, the TS 500 and EN-1992-1-1 overestimate the elasticity modulus and the SP-52-101-2003 estimates the values more close to experimental results. In addition, a new equation for modulus of elasticity including the compressive strength and the density is derived for RAC. Also, in this paper energy capacities of concretes (elastic energy capacity, plastic energy capacity and toughness) are evaluated considering compressive strength test data. As a result, according to energy capacities of concretes, the proportions 5% silica fume (SF) and 30% recycled aggregate are proposed as the optimum ratio.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb