Showing 3 results for Slopes
Faradjollah Askari, Orang Farzaneh,
Volume 6, Issue 1 (3-2008)
Abstract
Although some 3D slope stability algorithms have been proposed in recent three decades, still role
of pore pressures in three dimensional slope stability analyses and considering the effects of pore water
pressure in 3D slope stability studies needs to be investigated. In this paper, a limit analysis formulation for
investigation of role of the pore water pressure in three dimensional slope stability problems is presented. A
rigid-block translational collapse mechanism is used, with energy dissipation taking place along planar
velocity discontinuities. Results are compared with those obtained by others. It was found that water pressure
causes the three-dimensional effects to be more significant, especially in gentle slopes. This may be related to
the larger volume of the failure mass in gentle slopes resulting in more end effects. Dimensionless stability
factors for three dimensional slope stability analyses are presented - including the 3D effect of the pore water
pressure – for different values of the slope angle in cohesive and noncohesive soils.
C. Vieira,
Volume 12, Issue 1 (1-2014)
Abstract
This paper presents a simplified approach to estimate the resultant force, which should be provided by a retention system,
for the equilibrium of unstable slopes. The results were obtained with a developed algorithm, based on limit equilibrium
analyses, that assumes a two-part wedge failure mechanism. Design charts to obtain equivalent earth pressure coefficients are
presented. Based on the results achieved with the developed computer code, an approximate equation to estimate the
equivalent earth pressure coefficients is proposed. Given the slope angle, the backslope, the design friction angle, the height of
the slope and the unit weight of the backfill, one can determine the resultant force for slope equilibrium. This simplified
approach intends to provide an extension of the Coulomb earth pressure theory to the stability analyses of steep slopes and to
broaden the available design charts for steep reinforced slopes with non-horizontal backslopes
M. Hajiazizi, Eng. A. R. Mazaheri,
Volume 13, Issue 1 (3-2015)
Abstract
Stabilization of earth slopes with various proposed methods is one of the important concerns of geotechnical engineering. In this practice, despite numerous developments, design conservativeness and high costs of stabilization are the issues yet to be addressed. This paper not only deals with pile location optimization but also studies the effects of the pile length by using line segments slip surface (non-circular). Taking into account the line segments slip surface in stabilization of earth slopes is a new topic which has been addressed in this paper. The line segments slip surface is actual slip surface and for determining the pile location it can lead to the actual length of the pile.
The line segments critical slip surface is obtained by using the Alternating Variable Local Gradient (AVLG) optimization method. AVLG is an approach in optimization process and it is based on the Univariate method. The line segments form the initial and critical slip surface. Pile improper installation and inadequate length not only fails to increase the factor of safety, but also reduces it. The analyses are performed using the limit equilibrium (LE) method. Results of these analyses are acceptable and are properly consistent with the results obtained by other researchers.