Search published articles


Showing 55 results for Strength

Mazloom M., Ramezanian Pour A.a.,
Volume 2, Issue 1 (3-2004)
Abstract

This paper presents the long-term deformations of reinforced high-strength concrete columns subjected to constant sustained axial forces. The objective of the study was to investigate the effects of binder systems containing different levels of silica fume on time-dependent behaviour of high-strength concrete columns. The experimental part of the work focused on concrete mixes having a fixed water/binder ratio of 0.35 and a constant total binder content of 500 kg/m3. The percentages of silica fume that replaced cement in this research were: 0%, 6%, 8%, 10% and 15%. The mechanical properties evaluated in the laboratory were: compressive strength secant modulus of elasticity strain due to creep and shrinkage. The theoretical part of the work is about stress redistribution between concrete and steel reinforcement as a result of time-dependent behaviour of concrete. The technique used for including creep in the analysis of reinforced concrete columns was age-adjusted effective modulus method. The results of this research indicate that as the proportion of silica fume increased, the short-term mechanical properties of concrete such as 28-day compressive strength and secant modulus improved. Also the percentages of silica fume replacement did not have a significant influence on total shrinkage however, the autogenous shrinkage of concrete increased as the amount of silica fume increased. Moreover, the basic creep of concrete decreased at higher silica fume replacement levels. Drying creep (total creep - basic creep) was negligible in this investigation. The results of the theoretical part of this researchindicate that as the proportion of silica fume increased, the gradual transfer of load from the concrete to the reinforcement decreased and also the effect of steel bars in lowering the concrete deformation reduced. Moreover, the total strain of concrete columns decreased at higher silicafume replacement levels.
M.r Esfahani , M.r Kianoush, M. Lachemi ,
Volume 2, Issue 3 (9-2004)
Abstract

This paper compares the results of two experimental studies on bond strength of steel and GFRP bars in the case of self-consolidating concrete (SCC). Each study included pull-out tests of thirty six reinforcing bars embedded in concrete specimens. Two types of concretes, normal concrete and self-consolidating concrete were used in different studies. Different parameters such as bar location and cover thickness were considered as variables in different specimens. The comparison between the results of GFRP reinforcing bars with those of steel deformed bars showed that the splitting bond strength of GFRP reinforcing bars was comparable to that of steel bars in both normal strength and self-consolidating concrete (SCC). The bond strength of bottom reinforcing bars was almost the same for both normal concrete and self-consolidating concrete. However, for the top bars, the bond strength of self-consolidating concrete was less than that of normal concrete.
Khalou A.r., Ghara Chour Lou A.,
Volume 3, Issue 1 (3-2005)
Abstract

This paper presents the results of analytical studies concerning the flexuralstrengthening of reinforced concrete beams by external bonding of high-strength lightweightcarbon fiber reinforced plastic (CFRP) plates to tension face of the beam. Three groups of beamswere tested analytically and compared with existing experimental results. Results of the numericalanalyses showed that, although addition of CFRP plates to the tension face of the beam increasesthe strength, it decreases the beam ductility. Finite element modeling of fifteen different beams in aparametric study indicates that steel area ratio, CFRP thickness, CFRP ultimate strength andelastic modulus considerably influence the level of strengthening and ductility.
Mahin Roosta R., Sadaghyani M.h., Pak A.,
Volume 3, Issue 3 (9-2005)
Abstract

Existence of discontinuities causes higher deformability and lower strength in rock masses. Thus joints can change the rock mass behaviour due to the applied loads. For this reason properties and orientation of the joint sets have a great effect on the stability of rock slopes. In this paper, after introducing some numerical methods for evaluating the factor of safety for the stability of slopes, stability of jointed rock slopes in the plane strain condition is investigated with the strength reduction technique this method is modified and applied in the multilaminate framework. First of all, stability of one homogeneous rock slope is investigated and compared with the limit equilibrium method. Then stability of a layered rock slope is analyzed with some modifications in the strength reduction technique. Effects of orientation, tensile strength and dilation of layered joint sets on the factor of safety and location of the sliding block are explained.
Khaloo R., Sharifian M.,
Volume 3, Issue 3 (9-2005)
Abstract

Results of an experimental investigation performed to evaluate the effect of various concrete strength levels on behavior of lightweight concrete (LWC) under pure torsion are reported.The principle variable of the testing program was compressive strength of concrete (�'c) which ranged between 6.9 and 81.4 MPa. Ten mixture proportions were utilized for LWC of 1500 to 2050 kg/m3 unit weight. In total, sixty four (thirty two pairs) rectangular specimens with 100x 200 mm cross-section were tested. Ultimate torsion strength of LWC increases as uniaxial compressive strength increases however the increase rate reduces for high levels of concrete strengths. The test results are compared with predictions of elastic and plastic theories for torsion and the ACI Code. The Code underestimates the cracking torque of LWC under pure torsion. A regression equation incorporating test results is higher than the ACI equation prediction by a factor of 1.12.
M. Naderi,
Volume 4, Issue 2 (6-2006)
Abstract

This paper introduces an innovative partially destructive method, called “Twist-off”, for the assessment of in situ concrete strength. In this method a 40mm diameter metal probe is bonded to a concrete surface by means of a high strength epoxy resin adhesive. To measure the concrete compressive strength, a torque is applied using an ordinary torque-meter and the maximum shear stress at failure is used to estimate the cube compressive strength by means of a calibration graph. The relationship between the results of this new method and compressive strengths of concrete cores is also presented in this paper. The average coefficient of variation of the results of this method was seen to be of the order of 8 percent and the correlation coefficients of its comparative results with concrete cube and core compressive strengths were found to be 0.97 and 0.90 respectively. In order to assess the performance of this method on site, tests were undertaken on a number of buildings. Although the method was found to perform well but with some of the structures tested, the differences between the strengths of sample cubes and estimated in situ compressive strength of concrete were seen to be significant.
S.a. Naeini, R. Ziaie-Moayed,
Volume 5, Issue 2 (6-2007)
Abstract

Series of undrained monotonic triaxial tests and cone penetration tests were conducted on loose silty sand samples to study correlation between undrained shear strength of silty sands (Sus) and piezocone test results. CPT tests were conducted at 27 silty sand samples in calibration chamber. The results indicate that, in low percent of silt (0-30%), as the silt content increases, the undrained shear strength (Sus) and cone tip resistance (qc) decreases. It is shown that, fines content affects undrained shear strength (Sus) and cone tip resistance (qc) similarly. On the basis of obtained results, equations were proposed to determine the normalized cone tip resistance (qc1n) and undrained shear strength (Sus) of silty sand in term of fines content. Finally based on those equations, a correlation between normalized cone tip resistance and undrained shear strength of silty sand is presented. It is shown that the normalized undrained shear strength and normalized cone tip resistance of loose silty sands (F.C. <30%) decreases with increase of silt contents.
S.n. Moghaddas Tafreshi, A. Asakereh,
Volume 5, Issue 4 (12-2007)
Abstract

Conventional investigations on the behavior of reinforced and unreinforced soils are often investigated at the failure point. In this paper, a new concept of comparison of the behavior of reinforced and unreinforced soil by estimating the strength and strength ratio (deviatoric stress of reinforced sample to unreinforced sample) at various strain levels is proposed. A comprehensive set of laboratory triaxial compression tests was carried out on wet (natural water content) non-plastic beach silty sand with and without geotextile. The layer configurations used are one, two, three and four horizontal reinforcing layers in a triaxial test sample. The influences of the number of geotextile layers and confining pressure at 3%, 6%, 9%, 12% and 15% of the imposed strain levels on sample were studied and described. The results show that the trend and magnitude of strength ratio is different for various strain level. It implies that using failure strength from peak point or strength corresponding to the axial-strain approximately 15% to evaluate the enhancement of strength or strength ratio due to reinforcement may cause hazard and uncertainty in practical design. Hence, it is necessary to consider the strength of reinforced sample compared with unreinforced sample at the imposed strain level. Only one type of soil and one type of geotextile were used in all tests.
A. Foroughi-Asl, S. Dilmaghani, H. Famili,
Volume 6, Issue 1 (3-2008)
Abstract

Self-Compacting Concrete (SCC) is a highly fluid yet stable concrete that can flow consistently under its own weight, pass between bars, and fill in formwork without the need of compaction. The application of SCC effectively resolves the difficulties of concreting in situations with complicated formwork and congested reinforcements. In this paper, the bond between SCC and steel reinforcement was investigated. The bonding strengths of reinforcing bars were measured using cubic specimens of SCC and of normal concrete. The SCC specimens were cast without applying compaction, whereas the specimens of normal concrete were cast by conventional practice with substantial compaction and vibration. The results showed that SCC specimens generated higher bond to reinforcing bars than normal concrete specimens and the correlation between bond strength and compressive strength of NC is more consistent.
M.a. Khan, A. Usmani, S.s. Shah, H. Abbas,
Volume 6, Issue 2 (6-2008)
Abstract

In the present investigation, the cyclic load deformation behaviour of soil-fly ash layered system is

studied using different intensities of failure load (I = 25%, 50% and 75%) with varying number of cycles (N =

10, 50 and 100). An attempt has been made to establish the use of fly ash as a fill material for embankments of

Highways and Railways and to examine the effect of cyclic loading on the layered samples of soil and fly ash.

The number of cycles, confining pressures and the intensity of loads at which loading unloading has been

performed were varied. The resilient modulus, permanent strain and cyclic strength factor are evaluated from

the test results and compared to show their variation with varying stress levels. The nature of stress-strain

relationship is initially linear for low stress levels and then turns non-linear for high stress levels. The test

results reveal two types of failure mechanisms that demonstrate the dependency of consolidated undrained

shear strength tests of soil-fly ash matrix on the interface characteristics of the layered soils under cyclic

loading conditions. Data trends indicate greater stability of layered samples of soil-fly ash matrix in terms of

failure load (i) at higher number of loading-unloading cycles, performed at lower intensity of deviatoric stress,

and (ii) at lower number of cycles but at higher intensity of deviatoric stress.


M. Reza Esfahani,
Volume 6, Issue 3 (9-2008)
Abstract

In this paper, the effect of cyclic loading on punching strength of flat slabs strengthened with Carbon Fiber Reinforced Polymer (CFRP) sheets is studied. Experimental results of ten slab specimens under monotonic and cyclic loading are analyzed. Eight specimens were strengthened with CFRP sheets on the tensile face of the slabs and the two other specimens were kept un-strengthened as control specimens. The width of CFRP sheets varied in different specimens. After the tests, the punching shear strength of specimens under cyclic loading was compared with those with monotonic loading. The comparison of results shows that cyclic loading decreases the effect of CFRP sheets on punching shear strengthening. This decrease was more for the specimens with a larger value of reinforcing steel ratio. Therefore, it can be concluded that for specimens with large reinforcing steel ratios, cyclic loading may completely eliminate the effect of CFRP sheets on shear strengthening of slabs.
A. Arabzadeh, A.r. Rahaie, A. Aghayari,
Volume 7, Issue 3 (9-2009)
Abstract

In this paper a new method based on Strut-and-Tie Model (STM) is proposed to determine the shear capacity of simply supported RC deep beams and an efficiency factor for concrete with considering the effect of web reinforcements. It is assumed that, the total carried shear force by RC deep beam provided by two independent resistance, namely diagonal concrete strut due to strut-and-tie mechanism and the equivalent resisting force resulted by web reinforcements, web reinforcing reduces the concrete compression softening effect with preventing from the diagonal cracks opening or concrete splitting. The unknown function and parameters are determined from 324 experimental results obtained by other researchers. To validate the proposed method, the obtained results are compared with some of the existing methods and codes such as ACI 318-05 and CSA. The results indicate that the proposed method is capable to predict the shear strength of variety of deep beams with acceptable accuracy.
A. Allahverdi, E. Najafi Kani,
Volume 7, Issue 3 (9-2009)
Abstract

It has been shown that geopolymerization can transform a wide range of waste aluminosilicate materials into building materials with excellent chemical and physical properties such as fire and acid resistance. In this research work, geopolymerization of construction waste materials with different alkali-activators based on combinations of Na2SiO3 and NaOH has been investigated. A number of systems were designed and prepared with water-to-dry binder ratio, silica modulus, and sodium oxide concentration were adjusted at different levels and setting time and 28-day compressive strength were studied. The results obtained reveal that construction wastes can be activated using a proportioned mixture of Na2SiO3 and NaOH resulting in the formation of a geopolymer cement system exhibiting suitable workability and acceptable setting time and compressive strength. Laboratory techniques of Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were utilized for studying molecular and microstructure of the materials.
M. Mazloom ,
Volume 8, Issue 3 (9-2010)
Abstract

 According to the Iranian code of practice for seismic resistant design of buildings, soft storey phenomenon happens in a storey when the lateral stiffness of the storey is lower than 70% of the stiffness of the upper storey, or if it is lower than 80% of the average stiffness of the three upper stories. In the combined structural systems containing moment frames and shear walls, it is possible that the shear walls of the lower stories crack however, this cracking may not occur in the upper stories. The main objective of this research is to investigate the possibility of having soft storey phenomenon in the storey, which is bellow the uncracked walls. If the tension stresses of shear walls obtained from ultimate load combinations exceed the rupture modulus of concrete, the walls are assumed to be cracked. For calculating the tension stresses of shear walls in different conditions, 10 concrete structures containing 15 stories were studied. Each of the structures was investigated according to the obligations of Iranian, Canadian, and American concrete building codes. Five different compressive strengths of 30, 40, 50, 60, and 70 MPa were assumed for the concrete of the structures. In other words, 150 computerized analyses were conducted in this research. In each analysis, 5 load combinations were imposed to the models. It means, the tension stresses of the shear walls in each storey, were calculated 750 times. The average wall to total stiffness ratios of the buildings were from 0.49 to 0.95, which was quite a wide range. The final conclusion was that the soft storey phenomenon did not happen in any of the structures investigated in this research. 


M. Bastami, F. Aslani, M. Esmaeilnia Omran,
Volume 8, Issue 4 (12-2010)
Abstract

Structural fire safety capacity of concrete is very complicated because concrete materials have considerable variations. In this paper, constitutive models and relationships for concrete subjected to fire are developed, which are intended to provide efficient modeling and to specific fire-performance criteria of the behavior of concrete structures exposed to fire. They are developed for unconfined concrete specimens that include residual compressive and tensile strengths, compressive elastic modulus, compressive and tensile stress-strain relationships at elevated temperatures. In this paper, the proposed relationships at elevated temperatures are compared with experimental result tests and pervious existing models. It affords to find several advantages and drawbacks of present stress-strain relationships and using these results to establish more accurate and general compressive and tensile stress-strain relationships. Additional experimental test results are needed in tension and the other main parameters at elevated temperatures to establish well-founded models and to improve the proposed relationships. The developed models and relationships are general, rational, and have good agreement with experimental data.


A. Allahverdi, B. Shaverdi, E. Najafi Kani,
Volume 8, Issue 4 (12-2010)
Abstract

:The aim of this work is to investigate the influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast furnace slag from Isfahan steel plant. The silica modulus (SiO2/Na2O) of activator was adjusted at 0.6 and a number of mixes were designed in such a way to contain different levels of sodium oxide including 1, 2, 3, 4, 5, and 6% by weight of dry slag. The most important physico-mechanical properties of the pastes including workability, initial and final setting times, 28-day compressive strength and efflorescence severity were measured. Suitable mixes were chosen for more studies including compressive strength at different ages, 90-day autogenous and drying shrinkages. According to the results, increasing the sodium oxide content of the mixes results in increased workability, reduced setting times, and higher compressive strength. The results confirm the possibility of achieving 28-day compressive strengths up to 27.5, 50.0 and 70.0 MPa for mixes with sodium oxide content of 1, 2 and 3 wt% respectively. The measured values for autogenous shrinkage were all less than 0.1% and SEM studies showed a significant decrease in pore sizes with increasing sodium oxide concentration from 1 to 2%.


A. Allahverdi, E. Najafi Kani,
Volume 8, Issue 4 (12-2010)
Abstract

Fast set and high early strength cements containing calcium fluoroaluminate phase (C11A7CaF2) are usually produced by sintering a proportioned raw mix from calcareous and argillaceous components as the main raw materials, at reduced temperatures about 1330 °C. In this work, the possibility of utilizing natural pozzolan as the argillaceous component in the cement raw mix and in order to decrease the sintering temperature of fast set and high early strength cement clinker containing C11A7CaF2 phase has been investigated. The results reveal that the sintering temperature can be reduced to temperatures as low as 1270 °C by utilizing a suitable natural pozzolan and improving the mix burnability. The experimental results confirm the possibility of achieving final setting times as low as 10 min and 3-day compressive strengths as high as 57 MPa


Malik Shoeb Ahmad, S. Salahuddin Shah,
Volume 8, Issue 4 (12-2010)
Abstract

 Roadways have a high potential for utilization of large volume of the fly ash stabilized mixes. In this study, an attempt has been made to investigate the use of Class F fly ash mixed with lime precipitated electroplating waste sludge–cement as a base material in highways. A series of tests were performed on specimens prepared with fly ash, cement and lime precipitated waste sludge. California bearing ratio (CBR) tests were conducted for 70%-55%fly ash, 8%cement, and 30%-45%waste sludge combinations. Results show that the load bearing strength of the mix is highly dependent on the waste sludge content, cement as well as curing period. The CBR value of fly ash mixed with electroplating waste sludge and cement has been increased to manifold and results the reduction in the construction cost of the pavement. The study also encourages the use of two potentially hazardous wastes for mass scale utilization without causing danger to the environment, vegetation, human and animal lives. 


M. Mahmoudi, M. Zaree,
Volume 9, Issue 1 (3-2011)
Abstract

Inelastic deformation of structural components is generally acceptable in seismic design. In such behavior, the strength of structures increases while plastic hinges are formed in members frequently. The strength revealed during the formation of plastic hinges is called "overstrength". Overstrength is one of the important parameters in the seismic design of structures. The present study tries to evaluate the overstrength of the concentrically steel braced frames (CBFs), considering reserved strength, because of members post-buckling. As such, a static nonlinear (pushover) analysis has been performed on the model buildings with single and double bracing bays, different stories and brace configurations (chevron V, invert Vand X-bracing). It has been realized that the number of bracing bays and the height of buildings have a low effect on reserve strength due to brace post-buckling. However, these parameters have a profound effect on the overstrength factor. These results indicate that the overstrength values for CBFs, proposed in seismic design codes, need to be modified.


Mahmoud Reza Abdi,
Volume 9, Issue 2 (6-2011)
Abstract

The use of various slags as by-products of steel industry is well established in civil engineering applications. However, the use

of BOS slag in the area of soil stabilization has not been fully researched and developed despite having similar chemical

composition and mineralogy to that of Portland cement. This paper reports on efforts to extend the use of BOS slag to soil

stabilization by determining possible beneficial effects it may have on compressive strength and durability. Results of laboratory

tests conducted on kaolinite samples stabilized with lime and treated with various percentages of BOS slag are presented. Tests

determined strength development of compacted cylinders, moist cured in a humid environment at 35° C and durability by freezing

and thawing method. Results showed that additions of BOS slag to kaolinite samples singularly or in combination with lime

increased unconfined compressive strength and durability. These characteristics were significantly enhanced by the concurrent

use of lime and BOS slag for stabilization of kaolinite.



Page 1 from 3    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb