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Abstract: This paper proposes a method for determining the price bidding strategies of 
market participants consisting of Generation Companies (GENCOs) and Distribution 
Companies (DISCOs) in a day-ahead electricity market, while taking into consideration the 
load forecast uncertainty and demand response programs. The proposed algorithm tries to 
find a Pareto optimal point for a risk neutral participant in the market. Because of the 
complexity of the problem a stochastic method is used. In the proposed method, two 
approaches are used simultaneously. First approach is Fuzzy Genetic Algorithm for finding 
the best bidding strategies of market players, and another one is Mont-Carlo Method that 
models the uncertainty of load in price determining algorithm. It is demonstrated that with 
considering transmission flow constraints in the problem, load uncertainty can considerably 
influences the profits of companies and so using the second part of the proposed algorithm 
will be useful in such situation. It is also illustrated when there are no transmission flow 
constraints, the effect of load uncertainty can be modeled without using a stochastic model. 
The algorithm is finally tested on an 8 bus system. 
 
Keywords: Electricity market, Bidding strategy, Game theory, Genetic algorithm, Fuzzy 
sets, Mont-Carlo simulation. 

 
 
 
1 Introduction1 
In recent decades, the electricity supply industry 
throughout the world has been moved from centralized 
and vertically integrated structure to an open market 
environment. The main objective of these markets is 
decreasing the cost of electricity through competition 
[1]. There are different models for an electricity market, 
and the wholesale market is a common one. In this 
model no central organization is responsible for the 
provision of electrical energy. Instead, Distribution 
Companies (DISCOs) purchase the electrical energy on 
behalf of their customers directly from Generating 
Companies (GENCOs). These transactions can take the 
form of a pool or bilateral transactions [2]. In a pool 
market the producers and consumers submit their sales 
and purchasing bids, including a pair of quantity-price 
to market operator and the market clearing price (MCP) 
is announced by the market operator. Regardless of the 
bidding prices from suppliers and customers, all 
selected suppliers are paid and on the other hand all 
customers pay according to MCP [3]. In such a market, 
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each agent tries to establish a suitable price bidding 
strategy to maximize its profit. In a perfect competition, 
all participants are price-takers which means no 
participant can influence the market price unilaterally. 
Theoretically, in perfect competitive markets, suppliers 
should bid at, or very close to, their marginal production 
costs to maximize returns [3]. [4] Presents a model for 
generation scheduling in a competitive environment. 
The proposed model takes into account the main 
purposes of GENCOs which are selling electricity as 
much as possible and making higher profit. However, 
electricity markets are more akin to oligopoly than 
perfect competitive environments. In an imperfect 
competition, at least one company’s action has 
significant influence on other companies’ profits. 
Therefore, each company in establishing its bidding 
strategy must consider other companies’ actions in the 
market. In such a competition, game theory is a very 
useful method for determining bidding strategies of 
market participants. In [5], competition among pool 
participants was modeled as a non-cooperative game 
with incomplete information. [6] Utilizes the game 
theory to simulate price bidding behaviors of GENCOs 
and develops Nash equilibrium bidding strategies for 
GENCOs in electricity markets. However, with the 
complexity of the problem, the global optimal solution 
is difficult to be found by this approach. Reference [7] 
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presents two particle swarm optimization (PSO) 
algorithms to determine bid prices and quantities under 
the rules of a competitive power market. A bi-level 
programming technique is formulated in [8] to develop 
an optimal bidding strategy for a GENCO in the 
network constrained electricity markets, and Fuzzy 
adaptive particle swarm optimization (FAPSO) is 
applied to obtain the global solution of the proposed 
problem for single hourly and multi-hourly market 
clearings while opponents' bidding behavior is modeled 
with probabilistic estimation. In [9] GA is employed to 
solve this Bi-level optimization problem, and the 
formulation is expanded to account for different market 
participants’ risk profiles and it is shown that risk 
aversion may influence the optimal bidding strategy of 
an individual. A more detailed review of published 
works related to the GENCOs' bidding strategies is 
given in [10]. [11] Investigates the problem of 
developing optimal bidding strategies of GENCOs 
considering participants’ market power and 
transmission constraints. However, Demand response 
programs and the effect of load uncertainty have not 
been considered in these works. 

On the other hand, it is widely recognized that 
markets will work better when demand response 
programs are available. [12] Shows that even a small 
increase in demand elasticity in electricity markets can 
result in appreciable improvement of the market 
performance in terms of Lerner index, reducing 
congestion in the network and mitigating the strategic 
bidding behavior of the producers. Electric Power 
Research Institute (EPRI) estimates that demand 
response has the potential to reduce peak demand in the 
United States by 45,000 MW [13]. In [14] the 
reliability-constrained unit commitment problem is 
formulated in a mixed-integer program format. In this 
research, In addition to spinning reserve of generating 
units, interruptible load as a demand response program 
is also included as a part of operating reserve. Options 
for demand-responsive resource acquisition encompass 
a broad range of price-based (e.g. time-varying rates and 
interruptible tariffs) or incentive-based (e.g., direct load 
control, demand buy-back, demand bidding, and 
dispatchable stand-by generation) strategies, for 
example Direct load Control (DLC) interrupts consumer 
load by remotely shutting down or cycling consumers’ 
electrical appliances such as air conditioners and water 
heaters. Consumers usually receive remuneration in the 
form of a bill reduction in return for participation. A 
thorough examination of various types of demand 
response program can be found in [15]. 

Interrupting Loads (ILs) and Distributed Generations 
(DGs) are two major resources of demand response 
programs which DISCOs can exploit to improve their 
market activities and increase their payoffs. DISCOs 
can affect MCP and GENCOs' profits by these 
programs, therefore the effect of these activities must be 
considered in the market performance. [16] Presents a 

model for investigating interactions of GENCOs and 
DISCOs in a day-ahead pool electricity market. In this 
structure each GENCO tries to maximize its profit by 
establishing its generators supply curves, and each 
DISCO pursues a similar objective through using DGs 
and ILs. Therefore, DISCOs are not passive in the 
market and they can influence the MCP. In this research 
the strategic bidding problem has been formulated as a 
bi-level optimization problem, which its upper level 
sub-problem maximizes participants’ payoffs and the 
lower sub-problem solves the independent system 
operator’s (ISO) market clearing problem. On the other 
hand there are many uncertainties in a power system 
and the common one is uncertainty of load forecasting. 
This uncertainty can affect companies’ estimation of 
their profits and consequently it can influence 
companies’ bidding strategies. However the uncertainty 
of load forecasting has not been considered in [16]. 

This paper investigates the impact of load 
forecasting uncertainty in prices bidding strategies of 
market participants. The general structure of the 
presented research is similar to [16]. This work tries to 
obtain an equation between load and market 
participants' profits, and it is demonstrated that how 
load uncertainty can influence the profit of a risk neutral 
participant in an unconstrained power network. It is also 
shown that if the load is considered as a random 
variable with a normal probability distribution, 
mathematical expectation of GENCOs’ profits will 
increase as the standard deviation of random load 
increases and DISCOs’ profit will decrease as the 
standard deviation of load decreases. On the other hand, 
if lines flow capacity constraints are considered in the 
model, the relation between companies’ expected profits 
and the standard deviation of uncertain load greatly 
depends on the location of companies in the network, 
and in this case some companies’ profit shows high 
sensitivity to the standard deviation of load. So in such 
situations, considering load uncertainty is crucial in 
bidding strategy problem. In this paper, Mont-Carlo 
method is combined with the method mentioned in [16], 
for considering load uncertainty in bidding strategy 
problem. 

The rest of the paper is organized as follows. In 
sections 2 and 3, GENCOs’ and DISCOs’ profit model 
are formulated and their strategies in the market are 
presented. Section 4 describes the market clearing 
model. In section 5 the bidding model is obtained. The 
relation between load and companies’ profits is 
formulated in 6, the algorithm for solving the bidding 
model is presented in 7, and a numerical example 
surveys the algorithm in section 8. We conclude with a 
brief summary in the last section. 
 
2 GENCOs’ Profit Model and Strategies 

It is assumed that each GENCO has 
nNg  generators 

whose cost functions are as following: 
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2
g,i g,i g,i g,i g,i g,i g,i nC C(P ) a P b P c ,i 1,2, ,Ng= = + + = K  (1) 

Therefore, generators marginal cost is: 

i g,i g,i g,iMC 2.a .P b= +  (2) 

A generator’s marginal cost is a linear function of 
power generated by generator ( g,iP ), and it is the 
generator’s linear bid curve under perfect competition. 
The variation in price bidding is modeled as the 
variation of a single parameter k  multiplied by the 
generators’ marginal cost. Therefore, a generator’s 
supply function could be modeled as: 

g,i g,i g,i g,i g,i g,i g,iBid(P ) (P ) k .(2.a .P b )= ρ = +  (3) 

Each GENCO submits its supply curve, min
g,iP and 

max
g,iP  to the ISO, and ISO clears the market using a 

security constraint economic dispatch and determines 
each generator’s production amount and Local Marginal 
Prices (LMPs). According to the LMPs, each GENCO’s 
profits formulated as:  

n nNg Ng
2

n j g, j g , j g , j g , j g , j g , j
j 1 j 1

Rg LMP .P (a .P b .P c )

, n Ngco
= =

= − + +

∈

∑ ∑
 (4) 

 
3 DISCOs’ Profit Model and Strategies 

The objective of a DISCO is to maximize its profit 
by scheduling its DGs. A DISCO does not bid its DGs 
into day-ahead market but schedules its DGs according 
to the estimated LMPs, and also utilizes ILs to restrain 
high LMPs. It is assumed that the cost function of a DG 
is as follows [17, 18]: 

2
dg,i dg,i dg,i dg,i dg,iC(P ) a .P b .P ,i Ndg= + ∈  (5) 

It should be noted that, DGs with different 
technologies and cost functions, don't affect the outline 
of the proposed algorithm and their cost functions can 
be replaced with Eq. (5). The cost curve of a customer 
for curtailing its load according to [19] is given as: 

2
IL,i IL,i IL,i IL,i IL,iC(P ) a .P b .P ,i NIL= + ∈  (6) 

We assume that if the load of a DISCO is 
interrupted, the DISCO will be paid according to LMP 
and load reduction amount, and the DISCO returns all 
the compensation collected from the interruption of load 
to the interrupted end customer and does not benefit 
from the IL compensation. More detail explanations 
about the mentioned structure can be found in [17], 
[18]. After clearing the market, each DISCO pays ISO 
the price of purchased energy. The cost of purchased 
energy is: 

d,i i d ,iC(P ) LMP .P ,i Sn(m)= ∈  (7) 

where d,iP  is the energy purchased from the market by a 
DISCO at bus i. Therefore, a DISCO’s profit is the 
difference between the revenue it collects from 
customers and the cost it pays to purchase energy from 
market and produce energy by its DGs. The profit of a 
DISCO can be formulated as follows: 

0
c d,i IL,i dg,i

m 0
i Sn(m) i d,i IL,i dg,i

.(P P ) C(P )
Rd ,m Ndco

LMP .(P P P )∈

⎡ ⎤λ − − −
= ∈⎢ ⎥

− −⎢ ⎥⎣ ⎦
∑  (8) 

 
4 Market Clearing Model 

In this market, each GENCO submits its supply 
curve and each DISCO submits its demand, lower and 
upper IL limits and cost curve of ILs to ISO. ISO then 
clears market using a security constraint economic 
dispatch. The objective in this level is to minimize 
generation costs and cost of compensating ILs subject to 
the bids and line flow constraints: 

2
g,i g,i g,i g,i g,i g,i IL IL,i

i Ng i Nil
min (k .a .P k .b .P ) C (P )

∈ ∈

+ +∑ ∑  (9) 

Subject to: 
min max

g,i g,i g,iP P P ,i Ng≤ ≤ ∈  (10) 

max max
ij ij ijP P P ,ij Nl− ≤ ≤ ∈  (11) 

min max
IL,i IL,i IL,iP P P ,i NIL≤ ≤ ∈  (12) 

0
d,i IL,i dg,i g,i ij

j n (i)
(P P P ) P P 0 ,i n

∈

− − − + = ∈∑  (13) 

ij ij
ij Nl(l)

P .x 0 , l Nlp
∈

= ∈∑  (14) 

Constraints in Eqs. (10) and (11) represent 
generations and transmission lines capacity constraints 
and Eq. (12) shows IL capacity constraint. Eq. (13) is 
the load balance constraint on each bus, and Eq. (14) 
means that the summation of branch voltages in any 
independent loop must be equal to zero. This constraint 
is regarded according to DC power flow [20]. By 
solving this optimization problem, ISO determines g,iP , 

IL,iP
 
and LMP on each bus which is the Lagrangian 

multiplier of constraint in Eq. (13). 
 
5 Participants’ Bidding Model 

In a market each agent tries to maximize its profit. 
The competition assumed in this paper is imperfect 
which means each agent’s strategy influences other 
agents’ profits. If any agent in such competition strives 
to optimize its own utility or cost unilaterally, it can be 
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regarded as a non-cooperative game. If each player has 
chosen a strategy and no player can benefit by changing 
his or her strategy while the other players keep theirs 
unchanged, then the current set of strategy choices and 
the corresponding payoffs constitute Nash equilibrium. 
Nash equilibrium may, however, be Pareto inefficient 
[21], and would be the only outcome that agents can 
credibly achieve in a non-repeated interaction. The 
rationale of this proceeding is that agents only seek their 
private benefits, ignoring the benefits or disadvantages 
of their actions for the opponents and it makes the game 
to be converged in a point which does not necessarily 
have the best payoffs for all players [22]. 

But in reality a day-ahead market occurs every day, 
and power market could not be categorized as such 
games, but could be considered as an infinitely repeated 
game. In such games, since players have long term 
relationships the value of future interaction serves as the 
rewards and penalties to discipline the players’ current 
behavior and in such a case, aligning individual 
incentives with social goals is essential for efficiency 
[23]. Regarding this instead of Nash equilibrium we try 
to find a Pareto optimal point, A Pareto optimal 
outcome is one such that there is no other outcome 
where some agent’s utility can be increased without 
decreasing the utility of some other agent. To find this 
point, each player must maximize its profit, along with 
other players’ profit and tries to find a socially optimal 
point. So each participant, for determining its bid, has to 
solve a bi-level optimization problem in which upper 
level sub-problem maximizes all participants’ profits, 
and in lower level sub-problem market clearing model is 
considered. These can be formulated as follows: 

1

2

Ndco

1

2

Ngco

max Rd
max Rd

max Rd
max Rg
max Rg

max Rg

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

M

M

 (15) 

Subject to: 
min max
g,i g,i g,iK K K ,i 1, , Ng≤ ≤ = K  (16) 

min max
dg,i dg,i dg,iP P P ,i 1, , Ndg≤ ≤ = K  (17) 

Eqs. (9)-(14) (18) 

Relations and parameters in reality however are not 
that much simple, and there are many uncertainties in 
them. One of the common uncertainties in power 
systems is load uncertainty, and it can influence 
participants’ bidding strategy, so each participant has to 

arrange his bid according to this influence. Therefore, 
before proposing a method for solving bidding strategy 
problem, we obtain the effect of load uncertainty on the 
profit of a risk neutral participant, and then design our 
algorithm with regard to this effect. 
 
6 Modeling Participants’ Profit and Load 

To investigate the relation between participants’ 
profit and load, we assume a simple system without any 
line flow capacity constraint. In this system, there is a 
GENCO which has a generator with a cost function 
according to Eq. (1) and submits Eq. (3) as its bid, and 
also it is assumed that there is a DISCO which has an IL 
with a cost function according to Eq. (6), and therefore 
IL’s marginal cost is IL IL IL2.a .P b+ . If it is assumed that 
IL has a lower and upper limit IL min IL IL max(P P P )≤ ≤ , the 
profits of participants could be derived according to Fig. 
1. Curves No. 1 and No. 2 in Fig. 1 are generator’s 
marginal cost curve and bidding curve respectively, L  
is the amount of load, and ILMaxL P−  is the amount of 
load after interrupting IL fully and cλ  is DISCO’s retail 
price. If curve No. 2 crosses load in a point between L  
and IL minL P− , load could be considered as L  or 

IL minL P−  depending on the IL’s interruption policy. It 
should be noticed that fixed cost coefficient (C) is not 
considered in GENCO’s profit in Fig. 1 and must finally 
be subtracted from GENCO’s profit. 

Generally for considering load uncertainty a normal 
probability distribution function (PDF) is used. Since 
the load is a random variable with specific probability 
distribution, finding participants’ expected profit is like 
oscillating load curve in Fig. 1 to left and right 
according to load’s randomness pattern and averaging 
GENCO’s and DISCO’s profit, thus the standard 
deviation of load’s PDF could affect participant’s 
expected profit. Since there is IL in the system, to find 
this effect the problem has to be analyzed in following 
states: 

1. No load is interrupted 
2. Part of IL is interrupting 
3. IL is fully interrupted 
4. There are multiple suppliers in system 

(It is assumed that the lower limit of IL is zero). 
 

6.1   No Load Is Interrupted 
In this state, no load is curtailed with respect to 

GENCO’s bid, the condition for being in this state is: 

IL
IL

b k.bk(2.a.L b) b L
2.k.a
−

+ →p p  (19) 

Also, by considering Fig. 1, GENCO’s profit could 
be obtained as follows: 

2

2

Rg L. (2.k.a.L b.k)-(a.L b.L c)

(2.k.a -a) .L (k.b-b) .L-c  

= + + +

= +
 (20)  
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Fig. 1 Companies profits in a simple market. 

 
This equation shows that profit in this state is a 

quadratic function of load. Thus by taking random 
sample of load, the expected profit of GENCO will be 
more than the case in which load is considered as its 
mean value. For example, we consider a quadratic 
function 2f (x) x x cα β= + + , and we assume that x 
has a normal probability distribution which 0x  and σ  
denote its mean value and standard deviation 
respectively. If we want to calculate expected value of 
f (x)  by taking random samples of x, for every two 
samples that have ε  difference from 0x  we have: 

0 0

2 2
0 0 0 0

2 2
0 0

2
0

f(x ) f(x )
2

 (x )  (x ) c  (x )  (x ) c
2 2

 x  x c  
f(x )  

+ + −

+ + + + − + − += +

= + + +
= +

ε ε

α ε β ε α ε β ε

α β αε
αε  

(21) 

 

 

Since the differences between the samples and mean 
value is σ  on average, 2ασ  will be added to the value 
of f (x)  at 0x . Therefore, if the load is considered as a 
random variable in such system, we can obtain 
GENCO’s expected profit just by obtaining GENCO’s 
profit with the mean value of load and adding 

2(2ka a)σ−  to it, and thus no stochastic sampling is 
needed. Note that, the expected profit of GENCO 
increases with increasing the standard deviation of load. 

On the other hand, DISCO’s profit function could be 
obtained as follows: 

2
c c.Rd L k.(2.a.L b).L k.2.a.L L.( k.b)= − + = − + −λ λ  (22) 

Since DISCO’s profit function is quadratic and 
coefficient of 2L  is negative, DISCO’s expected profit 
decreases as the standard deviation of load increases. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2 Part of IL is interrupting. 
 

6.2  Part of IL Is Interrupting 
In this state, some part of IL with respect to the 

GENCO’s bid is interrupting (Fig. 2), the condition for 
being in this state is:  

IL

ILMax IL ILMax IL.

k.(2.a.L b) b   
&   
 k.(2.a.(L P ) b) 2.a P b

+ >

− + < +
 (23) 

The amount of interrupted load is: 

IL IL IL IL

IL
IL

IL IL

.

.2.a P b k.(2.a.(L P ) b)    
k.b b2.k.aP L .L

2.a 2.k.a 2.a 2.k.a

+ = − +
−→ = + +

+ +
� α β

 (24) 

Therefore GENCO’s profit will be: 

2
IL IL IL IL

2 2

2

.

           

Rg
k.(2.a.(L P ) b).(L P ) (a.(L P ) b.(L P ) c)
(1 ) (2.k.a a).L  (1 ).( 2. .(2. k.a a)

(k.b b)).L ...(( 2. k.a a). (k.b b). c)     
α α β

β β

= − + − − − + − +

= − − + − − − +
− + − − − −

 

(25) 

where IL

IL

2.a1    12.a 2.k.a− = <+α . 

In this state, profit is also a quadratic function of 
load. Therefore, the relation between expected profit 
and load is like state 1, but the coefficient of 2L is 
smaller in this state, thus with increasing the standard 
deviation of load, the expected profit increases but the 
increment amount is less than state 1. The profit of 
DISCO in this state is: 

C IL IL

2 2

2
C

.

.

Rd
L k.(2.a.(L P ) b).(L P )

k.2.a.(1 ) L (4.k.a.(1 ). ...
... k.b.(1 ) ). L (k.b. 2.k.a. )

= − − + −

= − − + −
− − + + −

λ
α α β
α λ β β

 (26) 

DISCO’s profit is also a quadratic function of load 
and since the absolute value of coefficient of 2L  is 
negative, with increasing the standard deviation of load 

PILmin 

L 
L-PIL max 

Profit of GENCO Profit of DISCO 

λc 

bIL+2aILPIL max 

bIL 

K(2aL+b) 

b 

kb 

Power(MW) 

2

1 

Price($/MW) 

L L-PILMax 

λc 

bIL+2aILPILMax 

bIL 

K(2a(L-PIL)+b) 

b 

kb 

Power(MW) 

Price($/MW) 
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the expected profit of DISCO decreases and the 
decrement amount is less than that in state 1. 
 

6.3  IL Is Fully Interrupted 
The condition for being in this state is: 

ILMax IL ILMax IL.k.(2.a.(L P ) b) 2.a P b− + > +  (27) 

This state is like state 1, and the relation between 
expected profit and load is like that in state 1 and is not 
obtained here for brevity. 

 
6.4  The Relation with Multiple Suppliers 

If there are multiple suppliers in the system, and 
each supplier submits following equation as its supply 
function: 

i i i ibid x p y      , i 1,..., n= + =  (28) 

ISO clears market by establishing Lagrange 
equation: 

n n
2

i i i i i
i 1 i 1

( . . .1C x p y p )  .(L P )
2= =

= + + −∑ ∑λ  (29) 

Using Lagrange multiplier method and some 
manipulation shown in appendix A, λ  is derived as: 

n
i

i 1 i

n n

i 1 i 1i i

y
xL

1 1( ) ( )
x x

=

= =

∑
= +
∑ ∑

λ  (30) 

This equation represents system’s equivalent supply 
function, which shows the relation between load and 
market clearing price. With regard to such equivalent 
supply function, the profit of a supplier, for example 
GENCO1, is derived: 

2
1 1 1 1 1 1 1Rg p (a p b p c )= − + +λ  (31) 

1
1 1 1 1

1

    −= + → = λλ yx p y p x  (32) 

Now we derive the relation between profit and load. 
Since profit is a quadratic function of load, according to 
state 1, the coefficient of 2L  will finally affect the 
expected profit of GENCO, thus by putting Eqs. (30) 
and (32) into Eq. (31), the coefficient of 2L  will be 

The 1 1(x a )−  is coefficient of 2L  in state1, and 

n
2 2

1
i 1 i

.

1( )1( ) xx=
∑

 

is added in the presence of other suppliers; 

therefore if the standard deviation of load is σ , 

according to Eq. (21), the expected profit of jth GENCO 
could be calculated by putting the mean value of load in 
GENCO’s profit function and adding 

 
2

n j j2 2
j

i 1 i

.

1( ).(x a ).1( ) xx=

−
∑

σ  to it. 

According to above equations in an unconstrained 
network, participants’ profit is a quadratic function of 
load, and if the load uncertainty is modeled by a normal 
PDF, the expected profit of a GENCO increases as the 
standard deviation of load increases and the reverse 
occurs to DISCO’s expected profit. 

 
7 Problem Solving Algorithm 

As mentioned before each participant for 
determining its best strategy has to solve Eqs. (15)-(18). 
On the other hand, participants could not predict the 
amount of load precisely, and they use a normal 
probability distribution for modeling load uncertainty. 
Therefore, in modeling the problem, the parameter 0

d,iP  
in Eq. (13) is uncertain and just its probability 
distribution is available. Since the problem is 
complicated, the analytical methods could not solve it. 
Therefore, stochastic methods like Genetic Algorithm 
could be helpful. In this paper fuzzy satisfying method 
and Genetic Algorithm are used simultaneously to solve 
bi-level optimization problem and Mont-Carlo method 
is also used to model load uncertainty. Since there are 
several objectives in the problem, fuzzy satisfying 
method is useful. In fuzzy set theory, each object x in a 
fuzzy set X is given a membership function denoted by 

(x)μ , which is corresponding to the characteristic 
function of the crisp set whose values range between 
zero and one. In fuzzy sets the closer the value (x)μ  to 
1, the more x belongs to X. The x in this problem is 
participants’ profit, and therefore for every participant a 
minimum and maximum profit has to be obtained. After 
finding a maximum and minimum profit for each 
participant, the membership function of each objective 
could be defined as: 

min
i i

max
min maxi i

i i i imax min
i i

max
i i

0 R R
R R(R ) R R R

R R
1 R R

⎧
⎪
⎪
⎨
⎪
⎪
⎩

≤

−= ≤ ≤
−

≥

μ  (34) 

Note that maximizing all participants’ profits in Eq. 
(15) does not mean that all participants will finally 
profit well, but rather if a participant has not the ability 
to influence market clearance point, other participants 
should not regard the profit of such participant in their 
optimization problem, or they can put maximum profit 
of such participant in Eq. (34) so low that it does not 
impose any constraint on their optimization. 

Before calculating objective functions that are 
GENCO’s and DISCO’s profit, and their membership 

22
21

1 1n n n
2 2 2 2 2

1 1 1
i 1 i 1 i 1i i i

.

. . .

a LL 1L ( ).(x a )1 1 1( ) x ( ) x ( ) xx x x= = =

− = −
∑ ∑ ∑

 
(33) 
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values, g,iP s, IL,iP s and LMPs must be calculated. These 
parameters are obtained in lower level sub-problem. On 
the other hand, in market clearing model, according to 
Eqs. (9)-(14), g,iK and dg,iP  are inputs, thus for every 
combination of g,iK s and dg,iP s there is a set of profits, 
and by putting these profits into their membership 
function fuzzy set of profits is obtained. In other words, 
for every combination of inputs we will have a set of 
fuzzy profits in output. To compare the value of two 
fuzzy sets of profits, the most attention is given to the 
minimum value of each set. This can be formulated as 
follows: 

i 1,...,N

N

i i
i 1

minMaximize [ ( (R ))    (R )]
= =

+ ∑μ ρ μ  (35) 

To circumvent the necessity to perform the Pareto 

optimality test, the term 
N

I
i 1

. (R )
=
∑ρ μ

 
is added, where ρ 

is a sufficiently small positive number [24]. For finding 
participants’ best strategy to maximize Eq. (35) Genetic 
algorithm is applied. Each chromosome in this method 
is 1 1Chromosome Kg ,..., Kg , Pdg ,..., Pdg   ⎡ ⎤⎣ ⎦= n m . The fitness 
function in Genetic Algorithm is Eq. (35) that determine 
more desirable chromosome. 

To model load uncertainty, Mont-Carlo method is 
combined with the above mentioned method. For this 
purpose a normal probability distribution is considered 
for each load. For each chromosome that enters the 
OPF, sufficient samples are taken from these loads and 
the profits of companies is calculated with respect to the 
sampled loads, and the average of the profits is taken to 
determine chromosome’s fitness. 

Executing the algorithm involves following steps: 
1. For every objective establish a membership 

function according to objective’s maximum and 
minimum value like Eq. (34). 

2. Assign a normal probability distribution for load 
at each bus. 

3. Create a Genetic algorithm whose chromosomes 
consist of Ng+Ndg genes, and each gene 
represents either kg,i or Pdg,i. 

4. Initialize GA population and specify the number 
of generations allowed (the number of 
chromosomes in each generation is denoted by 
Popsize) 

5. Set GA generation counter gent 1= . 
6. Set the population counter popt 1= . 
7. To calculate the fitness of each chromosome , do 

the following for chromosome popt : 
a) Specify the number of Mont-Carlo trials 

denoted by MontT . 
b) Set MC trial counter montt 1= . 
c) Take sample of each random load. 
d) Solve market clearing problem Eqs. (9)-(14). 

e) Save g,iP s, IL,iP s and LMPs derived from (d), 
and with them calculate GENCOs’ and 
DISCOs’ profit. 

f) mont montt t 1= +  . If mont Montt T≤  go to 7.c 

g) Calculate the average profit of each popt : 

M o n t

p o p

T

t j
j 1M o n t

1R ( R )T =
= ∑  (36) 

h) pop popt t 1= + . If  popt Popsize≤  go to 7. 

8. Put expected profits derived in 7.g into Eq. (34) to 
derive fuzzy value of each expected profit. 

9. By putting fuzzy values derived in step 8 into Eq. 
(35) a number will be derived for every 
chromosome popt  that determines chromosome’s 
fitness. 

10. gen gent t 1= + . If gen gent T≤ , go to11, or else go to 
step 12. 

11. Perform standard GA operators such as crossover, 
mutation and etc and then go to step 6. 

12. Save the best chromosome derived in step 9 as 
participants’ best strategies. 

The flowchart of this algorithm is shown in Fig. 3. It 
must be noted that participants are considered risk 
neutral which means expected profit, or in fact, their 
average profit in large trials is their deciding factor. Eq. 
(36) could be changed depending on participant’s risk 
sensitivity. 
 
8 Numerical Results 

8.1  Part A 
To test what was derived in section 6, we consider a 

system with 3 suppliers whose parameters are shown in 
Table 1. By considering load as a random variable and 
using Mont-Carlo method, the expected profit of 
GENCOs are derived which are shown in Table 2. For 
example the first row of this table shows that if load is 
300 MW how much is the expected profit of GENCOs, 
and the last row shows the expected profit of GENCOs 
when the load is a random variable and its mean value 
and standard deviation are 300 MW and 45 MW 
respectively. It should be noted that the expected profit 
of GENCOs increase as the standard deviation of load 
increases. The expected profit of GENCOs could also 
be calculated by using what derived in Eqs. (21) and 
(33). For example when the standard deviation of load is 
36 MW, the expected profit of Gen1 could be calculated 
according to Eq. (21): 

2
Gen1R 3626.4 0.0147(36 ) 3645.5≅ + =  
This is approximately equal to the expected profit of 

Gen1 in Table 2. Therefore, the expected profit could be 
calculated just by using above method, and thus no 
stochastic sampling is needed in such case. 
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Fig. 3  Flowchart of proposed method. 
 

8.2  Part B 
The shown system in Fig. 4 is used to examine the 

proposed algorithm. The information of participants and 
transmission lines are shown in Tables (B-1)-(B-4) in 
Appendix B. The following assumptions are made in 
this study: 

• The simulation is running from GENCO3 
viewpoint. 

• Price that DISCOs charge their end customers 
for energy is 

c 95 $ / MWhλ = . 
• ILMaxP  is one fifteenth of peak load 
• Since with the available methods the error of 

load forecast could be reduced to 3% [25], the 

standard deviation of random load is assumed 
to be 3.5%. 

• The maximum and minimum profit of 
participants are assumed according to Table 3. 

By using the method described in previous section 
the following results are obtained. 

The best strategy for participants is according to 
Table 4. With respect to these strategies and load 
uncertainty the probability distribution of GENCO3’s 
profit is shown in Fig. 5. Since participants are risk 
neutral they decide on their expected profit. 
 
 
Table 1 Generators Parameters. 

 
ag 

($/MW2h) 
bg 

($/MWh) 
Pmax 

(MW) 
bid 

function 

Coef. 
of  L2 
in (33) 

Gen1 0.1 30 140 0.2P+60 0.0147 

Gen2 0.09 21.5 160 0.23P+55 0.0156 

Gen3 0.12 22.2 150 0.27p+50 0.0121 
 
Table 2 Generators Profits with respect to increasing in 
standard deviation of load. 

 
Profit of 
Gen1 ($) 

Profit of 
Gen2 ($) 

Profit of 
Gen3 ($) 

N(300,0) 3626.4 4879.6 4601.9 

N(300,9) 3628 4881.5 4603.4 

N(300,18) 3632.9 4886.6 4607.4 

N(300,27) 3635.3 4889 4609.1 

N(300,36) 3648.6 4903.4 4620.5 

N(300,45) 3655 4910.4 4625.7 
 
Table 3 Maximum and Minimum Profits. 

 
DISCO 

1 

DISCO 

2 

DISCO 

3 

GENCO 

1 

GENCO 

2 

GENCO 

3 

Min 

Profit ($) 
-2500 -3000 -1000 -1500 -1500 -1500 

Max 

Profit ($) 
4000 4500 2000 7500 7000 9500 

 
Table 4 Participants’ best strategies. 

PDG3 
(MW) 

PDG2 
(MW) 

PDG1 
(MW) KG8 KG7 KG6 KG5 KG4 KG2 

4.033 5.015 8.07 4.01 2.1 3.711 3.434 2.656 1.905 

 
Table 5 Participants’ expected profits. 

GENCO 
3 

GENCO 
2 

GENCO 
1 

DISCO 
3 

DISCO 
2 

DISCO 
1  

3031 2309 2212 239.8 129.2 207.2 Profit 
($) 

Save the best chromosome as participants’ best 
strategy 

Yes 

By putting profits of every tpop in (34) and (35) find 
the fitness of that tpop 

Perform standard GA operators such as crossover, 
mutation, etc 

tgen=tgen+1 tgen<Tgen 

tmont=tmont+1tmont<Tmont 

Calculate the average profit for tpop by averaging profits 
obtained in every tmont 

tpop=tpop+1tpop<Popsize 

Specify Tgen , Tmont and popsize, and generate the 
first population 

tPop=1 

tmont=1 

Take samples from each random load 

Solve market clearing problem, obtain Pg,i , Pdg,i , PIL,I 
and LMPs, and calculate GENCOs’ and DISCOs’ profit

tgen=1 

No 

Yes 

Yes 

No 

No 
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Fig. 4 Sample system. 
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Fig. 5 Probability distribution of GENCO3’s Profit. 
 

The expected profit of participants with respect to 
these strategies is shown in Table 5, and also the 
average amount of LMPs, lines flow, interrupted loads 
and power generated by generators are shown in Tables 
(6)-(8) respectively. 

Now if the amount of standard deviation of load is 
more or less than the value that is assumed in the 
problem, how it will affect the participant's profits. In 
other words, if participants don't pay attention to the 
uncertainty of load forecasting and estimate the load 

with a crisp value, how the error could affect their 
profits? 

In section 6 the relation between participants’ profit 
and load was obtained, and it is said that with a fixed 
bid and uncertain load, as the standard deviation of load 
increases the expected profit of GENCOs increases and 
DISCOs’ expected profit decreases. To illustrate this 
influence in this system, we increase the standard 
deviation of loads, and by considering that participants’ 
strategies are according to Table 4, we obtain the 
expected profit of participants. The results are shown in 
Fig. 6. 

As shown in Fig. 6, as the standard deviation of load 
is increased the expected profit of DISCO1 and 
DISCO2 are decreased, GENCO2’s expected profit is 
increased, and the expected profit of DISCO3, 
GENCO1 and GENCO3 are approximately stayed 
constant. This trend in profits is inconsistent with what 
concluded in section 6. This difference originates from 
the fact that what derived in section 6 was in an ideal 
network, but in this network we have congested lines 
that makes the relation between standard deviation of 
load and expected profits to be dependent on 
participants’ location in the network. In above network 
the line 11 has been congested, and as a consequence in 
most sampled loads in Mont-Carlo simulation, we have 
LMPs instead of MCP in the system. In the left side of 
this line, at the buses 5, 6 and 8, LMPs are low, and in 
the right side of this line, at the buses 1, 2, 3, 4 and 7, 
LMPs are high, and the reason is that supplying an 
additional megawatt of load at left nodes of the line 
decreases the congestion of line11 and the reverse 
occurs in the right side, and with considering this 
matter, the peculiar behavior in profits can be explained. 
DISCO1’s loads are located at buses 1 and 2, thus with 
increase in standard deviation of load, there are some 
high amount of loads among sampled loads that makes 
LMPs in these two buses increase significantly, and 
hence DISCO1’s expected profit decreases. 

 
 

Table 6 Average amount of LMPs. 
Bus 8 

($/MWh) 
Bus 7 

($/MWh) 
Bus 6 

($/MWh)
Bus 5 

($/MWh)
Bus 4 

($/MWh)
Bus 3 

($/MWh) 
Bus 2 

($/MWh) 
Bus 1 

($/MWh) 
95.3 98.1 94.96 95.17 97.32 99.2 100.1 101.7 

 
Table 7 Average amount of Lines flow. 

Line 11 
(MW) 

Line 10 
(MW) 

Line 9 
(MW) 

Line 8 
(MW) 

Line 7 
(MW) 

Line 6 
(MW) 

Line 5 
(MW) 

Line 4 
(MW) 

Line 3 
(MW) 

Line 2 
(MW) 

Line 1 
(MW) 

14.1٧ 2.585 -0.86 7.29 -8.94 -7.36 8.74 -15.25 -1.12 9.48 -15.57 

 
Table 8 Average amount of generation and interrupted loads. 

PIL5 
(MW) 

PIL4 
(MW) 

PIL3 
(MW) 

PIL2 
(MW) 

PIL1 
(MW) 

PG8 
(MW) 

PG7 
(MW) 

PG6 
(MW) 

PG5 
(MW) 

PG4 
(MW) 

PG2 
(MW) 

5.25 5.25 5.25 4.05 5.25 15.37 24 11.69 29.14 5.86 38.81 
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Fig. 6 GENCOs’ and DISCOs’ expected profit with respect to various amounts of standard deviation of load. 
 

DISCO2’s loads are located at nodes 3 and 4, and 
according to the same reasons its profit decreases with 
increasing standard deviation. DISCO3’s load is located 
at node 3, and because supplying an additional 
megawatt of load in this node does not considerably 
influence flow of line11, DISCO3’s expected profit is 
remained constant. Generators of GENCO1 are at nodes 
6 and 7. 

Therefore load uncertainty could be classified into 
two types, if there is no constraint in the system, section 
6 demonstrated that how the profits of companies will 
change. In such systems since the effect of load 
uncertainty on expected profits is determinable, 
participants can have a good estimation of their 
expected profits without using any stochastic algorithm, 
and if they want to use section 7’s algorithm to find 
their best strategy they can omit Mont-Carlo part in that 
algorithm. If there is line capacity constraint in the 
system, the relation between standard deviation of load 
and profits considerably depends on participants’ 
location in the network. For instance, in the above 
example the expected profit of DISCO3 was not 
affected by Standard deviation of load, but DISCO1’s 
expected profit was sensitive to the standard deviation 
of load because of its location in the network. 
Therefore, according to such bidding, DISCO3 could 
rely more on its expected profit, but DISCO1could not 
be confident enough and if he miscalculates the amount 
of load, its profit will change because of its location in 

the network, and finally the proposed algorithm for 
bidding is better to be used in such system. 
 
9..Conclusion 

Since in an imperfect competition each participant’s 
action has influence on market clearing price, 
participants have to consider other participants’ actions 
when maximizing their profits. In this paper a method 
for participating in such a competition in a pool market 
was proposed. In this method, because power 
transaction in a power market occurs frequently, 
strategy for finding a socially optimum point was 
presented and since load uncertainty can affect 
participants’ expected profit we modeled this effect into 
their bidding strategy. Therefore the relation between 
participants’ profit and load in an unconstrained 
network was derived and it was shown that when the 
standard deviation of random load increases, the 
expected profit of GENCOs and DISCOs increase and 
decrease respectively, and it was derived that the effect 
of load uncertainty in the expected profit of a risk 
neutral participant is determinable. It was also shown 
that, if there is line capacity constraint in the network, 
the relation between participants’ expected profit and 
standard deviation of uncertain load has a different 
pattern, which differs with respect to participants’ 
location in the network. Therefore, in such system 
participants have to pay more attention in the effect of 
load in their bidding strategy, and using the proposed 
algorithm is helpful in such situations. 
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Appendices 
Appendix A 

ISO clears market by establishing Eq. (29) and by 
using Lagrange multiplier according to following: 

i
i i i i

i i

yc 0     x P y 0    P
P x

−∂
= → + − = → =

∂
λ

λ  (A-1) 

n n

i i
i 1 i 1

c 0    L P 0    L P
= =

∂
= → − = → =

∂
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 (A-2) 

By putting Eq. (A-1) into Eq. (A-2) we will have: 
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Appendix B 
Table B-1 GENCOs’ parameters. 

cg 
($) 

bg 
($/MWh) 

ag 
($/MW2h) PMax Pmin 

Gen 
No. 

GENCO 
No. 

17.64 45.62 0.08 40 0 G2 2 
31.6 35.35 0.11 58 0 G4 2 

49.75 22.47 0.09 40 0 G5 3 
89.62 23.37 0.095 50 0 G6 1 
24.05 33.47 0.085 24 0 G7 1 
79.78 21.39 0.078 60 0 G8 3 

 
Table B-2 DISCOs’ parameters. 

bIL 
($/MWh) 

aIL 
($/MW2h) 

Load 
(MW) 

Bus 
No. 

Load 
No. 

DISCO 
No. 

50.25 1 N(35,1.23)
 L1 1 1 ٭

52.26 1 N(27,0.95) 2 L2 1 
54.27 1 N(35,1.23) 3 L3 2 
55.61 1 N(35,1.23) 4 L4 2 
63.65 1 N(35,1.23) 5 L5 3 

*N(35,1.23) = normal distribution with mean value 35 and standard 
deviation 1.23 

 
 
Table B-3 DGs’ parameters. 

bdg 
($/MWh) 

adg 
($/MW2h) PMax Pmin 

Bus 
No. 

DG 
NO. 

DISCO 
No. 

34 0.09 10 0 2 DG2 1 
34 0.09 9 0 3 DG3 2 
34 0.09 8 0 5 DG5 3 

 
Table B-4 Lines’ parameters. 

Limits 
(MW) X(p.u) To Bus From Bus Line 

No. 
30 0.011 2 1 1 
30 0.018 3 2 2 
20 0.03 4 2 3 
40 0.022 7 3 4 
30 0.015 4 7 5 
30 0.03 6 4 6 
40 0.03 8 4 7 
40 0.0065 6 8 8 
20 0.02 5 8 9 
38 0.025 6 5 10 

14.2 0.03 1 6 11 

 
 

Appendix C 
 

Nl Set of all branches

Nl(l)  
Set of branches in independent 
loop l

Ndco Set of all DISCOs
Ngco Set of all GENCOs

( )Sn m Set of buses for DISCO m

nNg Set of generators for GENCO n
Ndg Set of all DGs 
NIL Set of all ILs 
Nlp Set of independent loops
n Set of all buses
n(i) Set of buses connected to bus i

0
d,iP Total demand of a DISCO 
max

ijP Maximum flow limit on line ij 

ijx Reactance of line ij 
cλ DISCO’s retail energy price

g,ik GENCO’s strategic parameter 
g,iP Generation of a generator 
dg,iP Generation of a DG 
IL,iP IL granted to a DISCO 
ijP Power flow of line ij  

iRd Profit of DISCO i
iRg Profit of GENCO i

i(R )μ Profit’s membership function

g,iC(P ) Cost function of a GENCO 

dg,iC(P ) Cost function of a DG 
IL,iC(P ) Cost function of DISCO’s IL 

min max
g,  i g,  iP P, Generator’s lower and upper limits
min max
dg,  i dg,  iP P, DG’s lower and upper limits 
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min max
IL,i IL,iP P,  IL’s lower and upper limits 
dg,i dg,ia b  Generation cost coefficients of a DG

IL,i IL,ia , b  IL cost coefficients of a DISCO 
g,i g,i g,ia , b ,c  Cost coefficients of a generator 
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