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Abstract: Uncertain switched linear systems are known as an important class of control 
systems. Performance of these systems is affected by uncertainties and their stabilization is 
a main concern of recent studies. Existing work on stabilization of these systems only 
provides asymptotical stabilization via designing switching strategy and state-feedback 
controller. In this paper, considering a given infinite-horizon cost function, a new switching 
strategy and a state-feedback control laws are designed to exponentially stabilize Uncertain 
Discrete-Time Switched Linear Systems (UDSLS). Our design procedure consists of two 
steps. First, we generalize the exponential stabilization theorem of nonlinear systems into 
UDSLS. Second, a new stabilizing switching strategy based on the Common Lyapunov 
Function technique presented. Hence, a sufficient condition on the existence of state-
feedback controller is provided in the form of Linear Matrix Inequality. Besides, 
convergence rate of the states is obtained and the upper bound of the cost is calculated. 
Finally, effectiveness of the proposed method is verified via numerical example. 
 
Keywords: Exponential Stabilization, Guaranteed Cost Control (GCC), Linear Matrix 
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1 Introduction1 
In recent years, researches on the switched systems have 
been widely increased [1]-[4]. The switched linear 
systems are one of the most important classes of hybrid 
systems with a switching signal that allows selection of 
one subsystem at each time to reach some control 
objectives. Many real-world processes such as switched 
circuits, switching power converters, computer 
controlled systems, communication networks and 
chemical process can be modeled as switched systems 
[5]-[7]. 

The issue of stabilization analysis and control of 
switched systems have been extensively studied in the 
literature [3], [4], [8]-[14]. Stabilization strategies for 
switched systems are mainly divided into two categories 
[1]. First, one problem is to design a suitable state-
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feedback control law to stabilize the closed-loop system 
under any arbitrary switching law given in an 
admissible set. Second, when switching signal is a 
design variable, the stabilization problem is to design 
switching signal and control law to stabilize the 
switched system. 

Stabilization of non-autonomous switched linear 
systems through switching and continuous control laws 
has also been studied in the recent years [8], [9], [12]. 
Most of these results are the extension of the 
stabilization for the autonomous switched systems [1]-
[7]. Robustness of switched linear systems is a main 
concern and behavior of these systems is affected by 
uncertainties. Hence, one of the problems associated 
with this study is how to design switching and control 
laws to overcome these uncertainties in order to 
guarantee stability of the system [11]. One way to deal 
with this uncertainty is called Guaranteed Cost Control 
(GCC) approach, proposed first in [15]. The advantage 
of this approach is providing an upper bound on the 
given performance index to guarantee the system 
performance dealing with uncertainties. Based on this 
idea, some results have been reported in the uncertain 
linear systems [16]-[17]. Also, there are some studies on 
the robust control of uncertain switched systems [18]-
[28]. Especially, in [18], [21] and [23] some significant 
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results have been reported on the designing state 
feedback controller and switching laws in GCC problem 
for uncertain discrete-time switched linear systems with 
infinite horizon LQR cost function. 

In these studies, the switching strategy and the state-
feedback controller are designed by using Common 
Lyapunov Function (CLF) and Multiple Lyapunov 
Functions (MLFs) techniques. Switching strategy is 
designed based on selecting a subsystem which has the 
lowest Lyapunov function value. Furthermore, these 
switching strategies provide asymptotic stability of the 
overall switched closed-loop system. Especially, when 
the CLF technique is used to design switching strategy, 
some complex Linear Matrix Inequalities (LMIs) are 
constructed which can be solved. Moreover, none of 
these studies can guarantee the boundedness of the 
guaranteed cost. 

Recently, exponential stabilization of discrete-time 
switched linear systems containing an infinite-horizon 
LQR cost function has been studied [29]-[31]. Most of 
these studies are based on dynamic programming, 
control Lyapunov function and piecewise quadratic 
Lyapunov function approaches for finding switching 
and control laws. 

The main goal of this paper is to exponentially 
stabilize the uncertain discrete-time switched linear 
systems and obtain the upper bound of an infinite-
horizon LQR cost function. To this end, based on the 
proposed CLF function, a new stabilizing switching 
strategy is designed. Also, it is proved that the proposed 
CLF satisfies the conditions of the exponential stability 
theorem. Besides, guaranteed cost controller is designed 
and the upper bound of the cost is obtained. The 
contributions of the paper are as follows: 

(i) Presenting a new switching strategy to guarantee 
the exponential stability of the uncertain discrete-time 
switched linear systems, 

(ii) Proving that the proposed CLF satisfies the 
conditions of exponential stability theorem. 

(iii) Obtaining convergence rate of states. 
The present paper is organized as follows: In the 

next section, problem formulation and preliminaries are 
given. In Section 3, exponential stability theorem of 
nonlinear systems is generalized into UDSLS and a new 
policy is presented, which guarantees the exponential 
stability of the overall switched closed-loop system. 
Moreover, sufficient condition on the existence of 
guaranteed cost controller is obtained. Section 4 and 
Section 5 are dedicated for illustrative example and 
conclusion, respectively. 

Also, the following notations will be used 
throughout this paper. m  is some arbitrary positive 
integer, Z +  denotes the set of non-negative integers, 

{ }1,2,...,m m�  is the set of subsystem indices, .  

denotes the standard Euclidean norm in ,nR ( )Aλ  stands 
for eigenvalues of matrix A  and the variable z  denotes a 
generic initial state (0)x  of the system in Eq. (1). 

2 Problem Formulation and Preliminaries 
In this section, problem formulation, necessary 

Assumption, Definitions, Lemmas and exponential 
stability concept are presented. 

Consider the uncertain discrete-time switched linear 
systems described by: 

( , ) ( , )

( , ) ( , ) ( , )

0

( 1) ( ) ( )

             ( ) ( ),     

( ) (0)

r x t r x t

r x t r x t r x t

n

x t A A x t

B B u t t Z

x t x R

+

+ = + Δ +

+ Δ ∈

= ∈

   (1) 

where, ( ) nx t R∈  is the state vector, ( , ) ( ) q
r x tu t R∈  is the 

control input vector and ( , )r x t m∈  is the piecewise 
constant discrete switching signal that determines the 
discrete mode i m∈ . Moreover, n n

iA R ×∈ and 
,  ,n q

iB R i m×∈ ∈  are the dynamics of each subsystem 
with appropriate dimensions and , ,  i iA B i mΔ Δ ∈  are 
uncertainties satisfying the following assumption. 

Assumption 1 ([11]). The time-varying parameter 
uncertainties ,i iA BΔ Δ  of the system have the following 
form: 

[ ] [ ], ( ) , ,     i i i i i iA B N F t C D i mΔ Δ = ∈      (2) 

where iC , iD  and iN  are known matrices with 
appropriate dimensions and ( ),  ,iF t i m∈  are unknown 
matrices that satisfy: 

( ) ( ) ,   .T
i iF t F t I i m≤ ∈                            (3) 

We define the following cost function as a total cost, 
starting from (0)x z=  for the uncertain switched 
system Eq. (1) as follows: 

( )( , ) ( , ) ( , ) ( , )
0

( ) ( ) ( ) ( ) ( )T T
r x t r x t r x t r x t

t

J z x t Q x t u t R u t
∞

=

= +∑  (4) 

where ( , )
n n

r x tQ R ×∈  and ( , )
q q

r x tR R ×∈  are symmetric 
positive definite weighted matrices. It is clear that, the 
cost (.)J  depends to initial state z . 

The main aim is to find switching signal ( , )r x t m∈  
and the stat-feedback controller ( , ) ( ) ( )r x t iu t K x t= , 

where ,  ,q n
iK R i m×∈ ∈  such that, the uncertain 

switched system (1) to be exponentially stable and the 
cost function (4) satisfies ( ) , ,nJ z J z R∗≤ ∀ ∈  where, 
J ∗  is defined as a guaranteed cost in Definition 1. 

Definition 1 ([19]). For the uncertain switched 
system (1), if there exist a state feedback control 

*
( , ) ( )r x tu t  for each subsystem, a switching law ( , )r x t∗  

and a positive scalar J ∗  such that for all admissible 
uncertainties, the closed loop system is stable and the 
value of the cost function Eq. (4) satisfies 

( ) ,J z J ∗≤ then, J ∗  and *
( , ) ( )r x tu t  are said to be 

Guaranteed Cost Value (GCV) and guaranteed cost 
control law (GCCL). 
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Definition 2 (Policy π ). The sequence of pairs 

{ }( , ) 0
( , ), ( )

t

r x t t
r x t u t

=∞

=
 is called a switching-control 

sequence. A sequence of switching–control laws 
constitutes a feedback policy as the following: 

( ) ( ){ }0 0 1 1( , ), ( ) , ( , ), ( ) ,...r x t u t r x t u tπ �          (5) 

Lemma 1 ([32]). Let H , M  and L  be real 
matrices with appropriate dimensions. If P  is a positive 
definite matrix and ε  is a positive scalar, such that 

1 0TI M PMε − − > , then, the following inequality holds 
for the any norm-bounded time varying uncertainty 

( )F t  satisfying ( ) ( )TF t F t I≤ . 

( ) ( )

( ) 11 1

( ) ( )T

T T T

H MF t L P H MF t L

H P MM H L Lε ε
−− −

+ + ≤

− +
      (6) 

Definition 3 (Exponential Stability [29]). The 
exponential stabilization problem of the system Eq. (1) 
is to find a sequence of switching-control laws Eq. (5) 
under which the trajectory ( )x t  starting from any initial 
state (0)x z=  satisfies: 

2 2( ) ,    tx t ac z t Z +≤ ∀ ∈        (7) 

For some constants 1a ≥  and convergence rate 
(0,1)c∈ . If there exists a stabilizing policy satisfying 

Eq. (5), then the system Eq. (1) is called exponentially 
stabilizable.  
 
3 Main Results 

In this section, first we extend exponential stability 
theorem in discrete nonlinear systems. Then we state 
and prove Lemma 2, Lemma 3 and Theorem 2 to design 
a new stabilizing switching and control laws in 
uncertain discrete-time switched linear systems and we 
show that proposed common Lyapunov function 
satisfies the conditions of exponential stability theorem. 

Theorem 1. Suppose that there exist a policy π  Eq. 
(5) and a function  : nV R R+→  satisfying conditions (i) 
and (ii) for all ( , ( ))t x t  where, ( )x t  is the trajectory of 
the system (1) under the policy π . 

(i) 2 2
1 2( )z V z zκ κ≤ ≤  for any nz R∈  and some 

finite positive constants 1κ  and 2κ ; 

(ii) 2
3( ( 1)) ( ( )) ( )V x t V x t x tκ+ − ≤ −  for any t Z +∈  

and some constants 3 0κ > , 
Then system Eq. (1) is exponentially stable under 

policy π . 
Proof. This theorem is a discrete-time version of 

exponential theorem in [34]. To prove, it must be shown 
that there exist two positive constants 1a ≥  and 

(0,1)c∈  such that Eq. (7) holds. To this end, from (i) 
and (ii) we have: 

2 3
3

2

( ( 1)) ( ( )) ( ) ( ( ))V x t V x t x t V x t
κ

κ
κ

+ − ≤ − ≤ −    (8) 

Then, 

3

2

( ( 1)) 1 ( ( ))V x t V x t
κ
κ

⎛ ⎞
+ ≤ −⎜ ⎟

⎝ ⎠
            (9) 

By substitution 0,1,2,...t =  in Eq. (9) we conclude: 

3

2

2

3 3

2 2

3

2

( (1)) 1 ( (0)),   

( (2)) 1 ( (1)) 1 ( (0)),

   

( ( )) 1 ( (0)),    
t

V x V x

V x V x V x

V x t V x t Z

κ
κ

κ κ
κ κ

κ
κ

+

⎛ ⎞
≤ −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
≤ − ≤ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
≤ − ∀ ∈⎜ ⎟
⎝ ⎠

#
        (10) 

In order to show that 3

2

1 1,
κ
κ

− <  we use the 

inequalities (i) and (ii), which yields: 

( )

2
3

2
2 3

0 ( ( 1)) ( ( )) ( )

( )

V x t V x t x t

x t

κ

κ κ

≤ + ≤ − ≤

−
             (11) 

since 2 3 0κ κ≥ > , we define 3

2

1 (0,1)c
κ
κ

= − ∈ . 

Therefore, using (i) and Eq. (10) results 
2

1

2 2
2 2

( ) ( ( )) ( (0))

(0)

t

t t

x t V x t c V x

c x c z

κ

κ κ

≤ ≤ ≤

=
         (12) 

And: 
2 22

1

( ) tx t c z
κ
κ

≤                            (13) 

Obviously 2

1

1a
κ
κ

= ≥  and thus Eq. (7) holds. Then 

the proof is completed. 
Now, according to the main goals of this paper, we 

will find the non-negative function V  satisfying 
Theorem 1, a switching law ( , )r x t  and GCC ( )u t  as 
well as stabilizing policy π  for the uncertain system 
Eq. (1) with cost function Eq. (4). 

In this section we propose a CLF ( ) TV x x Px=  for 
system Eq. (1) and by designing a new stabilizing 
switching strategy as a policy π  in Lemma 2, we will 
show that this CLF satisfies condition (ii) of Theorem 1. 
Therefore, based on Theorem 1 under this switching 
strategy, system Eq. (1) will be exponential stable. 
Finally, in Lemma 3, the proposed switching strategy is 
implemented and the guaranteed cost controller is 
designed via solving a set of LMIs. 
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Lemma 2. For given positive scalars , ,i i mδ ∈  If 
there exist a symmetric positive definite matrix P , 
positive scalars iε  and matrices , ,iK i m∈  with proper 
dimensions, such that 0T

i i iI N PNε − >  and: 

( ) 11

11
0,

T Tm
i i i i i

i
T Ti

i i i i i i i

Ac P N N Ac

E E P Q K R K

ε
δ

ε

−−

−=

⎡ ⎤− +
⎢ ⎥ <
⎢ ⎥− + +⎣ ⎦

∑         (14) 

where, ( )i i i iAc A B K= +  and ( ) , ,i i i iE C D K i m= + ∈ , 
then the systems Eq. (1) is to be exponentially stable 
under the following stabilizing switching and state 
feedback control laws. 

{ }( , ) ( ) ( ),   ( , ) arg min ,T
r x t i i m iu t K x t r x t x S x∈= =      (15) 

where, 

( ) 11 1 1

       .

T T T
i i i i i i i i i

T
i i i i

S Ac P N N Ac E E

P Q K R K

ε ε
−− − −= − + −

+ +
       (16) 

Moreover, the GCV is given by 
( ) (0) (0).TJ V z x Px∗ = =  

Proof. Firstly, let us define the following sectoral 
sets of nR . 

{ }( )  :  0 ,   .  n T
i iL S x R x S x i m= ∈ < ∈         (17) 

From Eq. (14) and Eq. (16), we have 
1

0
m

i i
i

Sδ
=

<∑  

which yields  

{ }
1

( ) \ 0 .
m

n
i

i

L S R
=

=∪                            (18) 

Thus, for any , 0,nx R x∀ ∈ ≠  there exist an index 
i m∈  such that 0T

ix S x < . 
Secondly, we propose ( ( )) ( ) ( )TV x t x t Px t=  as the 

CLF for uncertain switched linear system Eq. (1) and 
we show that for any t Z +∈ , there exist an index i m∈  
such that: 

( )( ( )) 0.T T T
i i i i iV x t x Q K R K x x S xΔ + + ≤ <       (19) 

For this, by substituting ( ) ( )iu t K x t=  into Eq. (1) 
combining with Eq. (2), we have: 

( )( 1) ( )i i i ix t Ac N F E x t+ = +           (20) 

and, 

( ) ( )
( ( )) ( ( 1) ( ( ))

TT
i i i i i i i i

V x t V x t V x t

x Ac N F E P Ac N F E P x

Δ = + − =

⎡ ⎤+ + −⎣ ⎦
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By using Lemma 1, we have: 

( ) ( )

( ) 11 1  ,  

T
i i i i i i i i

T T T
i i i i i i i i

Ac N F E P Ac N F E

Ac P N N Ac E E i mε ε
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+ + ≤

− + ∈
      (22) 

Now, by adding T
i i i iP Q K R K− + +  to the both sides 

of Eq. (22) results 

( ) ( )

( ) 11

1

( ) ( )

( ) ( ).

T
i i i i i i i iT

T
i i i i

T T
i i i i iT

T T
i i i i i i i

Ac N F E P Ac N F E
x t x t

P Q K R K

Ac P N N Ac
x t x t

E E P Q K R K

ε

ε
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−
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⎢ ⎥+ +⎣ ⎦
⎡ ⎤− +
⎢ ⎥
⎢ ⎥− + +⎣ ⎦

     (23) 

It follows from Eq. (21) and Eq. (23) that: 

( )( ( )) ( ) ( )

( ) ( ) 0.

T T
i i i i

T
i

V x t x t Q K R K x t

x t S x t

Δ + + ≤

<
                      (24) 

and thus, for any ,t Z +∈  there exist an index i m∈  
such that: 

( )( ( )) ( ) ( ) 0T T
i i i iV x t x t Q K R K x tΔ + + ≤        (25) 

Since iQ  and iR  are positive definite matrices, then 
T

i i i i iG Q K R K= +  is a positive definite matrix for any 
i m∈ . Using Rayleigh inequality [35], the following 
inequality holds: 

2 2
max min ,

,  

T
i i i

n

G x x G x G x

x R i m

λ λ− ≤ − ≤ −

∀ ∈ ∈
             (26) 

Then, by choosing: 

( ) ( )3 min minmin ( )ii m
G Gκ λ λ

∈
= =           (27) 

it is concluded that 2
3( ( ) ( )V x t x tκΔ ≤ − for all .t Z +∈  

Therefore, condition (ii) in Theorem 1 is satisfied. Also 
for quadratic Lyapunov functional, condition (i) is 
obviously satisfied. In other words, from Lemma 5 (in 
the Appendix) we have: 

2 2
min max( ) ( ) ( ) ,  T nP z V z z Pz P z z Rλ λ≤ = ≤ ∀ ∈   (28) 

Then by choosing 1 min ( )Pκ λ=  and 2 max ( )Pκ λ= , 
condition (i) in Theorem 1 holds. Therefore, based on 
Theorem 1, system Eq. (1) is exponentially stable. 

To find the GCV, Let T  be an arbitrary positive 
integer, taking the sum both side of Eq. (25) from 0t =  
to t T= , we obtain: 

( )
0

( ) ( ) ( ) ( )

( (0)) ( ( ) ( (0)).

T
T T T

i i i i
t

x t Q x t x t K R K x t

V x V x T V x
=

+ ≤

− ≤

∑         (29) 

Let T →∞  then: 

( )
0

( (0)) ( ),

 .

t
T T T

i i i i
t

x Q x x K R K x V x V z

i m

=∞

=

+ ≤ =

∀ ∈

∑       (30) 

It follows from Eq. (30) that the cost function 
( ) (0) (0) ( ).TJ z J x Px V z∗≤ = =  The proof is 

completed. 
Remark 1. It is noted that for the implementation of 

switching Eq. (15) we need to find the matrix P , the 
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state feedback gains iK  and the scalars 0iε > . In the 
following theorem, by applying Schur complement 
(Lemma 4 in the Appendix) we show that Eq. (14) is 
equivalent to the LMIs given by Eq. (31). Therefore, 
solving Eq. (31) results unknown matrices ,P ,iK  and 
positive scalars iε  and then, stabilizing switching 
strategy Eq. (15) can be implemented. 

Lemma 3. Given positive scalars , ,i i mδ ∈  assume 
that there exist positive scalars iε , invertible symmetric 
positive definite matrix X  and matrices , ,iY i m∈  such 
that 0,  T

i i iX N N i mε− > ∈  and the following 
inequality holds: 

1

0 0,

m
T T

i
i

T
i

i

X A

X NN

δ

ε
=

⎡ ⎤
− Ξ⎢ ⎥
⎢ ⎥

∗ − + <⎢ ⎥
⎢ ⎥∗ ∗ −Γ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
             (31) 

where 

( )

( )

1 1 1 1 1 1 1 1

1

1 1 2 2

1 2
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,   ,

,   ... ,

, ,..., ,  , ,..., ,  

, ,..., ,
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m m m m m m m m

m m

m

m

m

m

T T T
i

A X B Y C X D Y
A C

A X B Y C X D Y

Y
Y Q Q Q Q

Y

X diag X X X R diag R R R
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Y C X

δ δ

δ δ

δ δ δ
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⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
=

⎡ ⎤Ξ = Γ =⎣ ⎦

# #

#

��	�


( )( )11, , .T
idiag R I QQε

−−

(32) 

Then condition Eq. (14) holds and the switching 
strategy Eq. (15) can be implemented. 

Proof. Let 1P X −=  and 1 ,  .i i
i

K Y X i m
δ

= ∈  By 

Schur complement Lemma 4, Eq. (31) is equivalent to: 

( ) ( ) ( )
( ) ( )

11

11

+
 

0

T Tm
i i i i i i i i i

i T Ti
i i i i i i i i i i i

A B K P N N A B K

C D K C D K P Q K R K

ε
δ

ε

−−

−=

⎡ ⎤+ − +
⎢ ⎥
⎢ ⎥+ + − + +⎣ ⎦

<

∑ (33) 

Consequently, condition Eq. (14) of Lemma 2 holds. 
Thus, by solving Eq. (31), the switching strategy (15) 
can be implemented and then system Eq. (1) is 
exponential stable under the switching strategy Eq. (15) 
as concluded in Lemma 2. The proof is now completed. 

Theorem 2. For given positive scalars iδ , assume 
that there exist positive scalars iε  symmetric positive 
definite matrix X  and matrices , ,iY i m∈  such that 

LMIs Eq. (31) hold. Then the system Eq. (1) to be 
exponentially stable under the switching strategy Eq. 

(15), where, 1P X −=  and 1 ,  .i i
i

K Y X i m
δ

= ∈  

Moreover, the cost function Eq. (4) is bounded by 
* ( ) (0) (0).TJ V z x Px= =  

Proof. The proof of Theorem 2 is straight forward 
from Lemma 2 and Lemma 3. 

Remark 2. In summary, to find the guaranteed cost 
value (GCV) J ∗ , the guaranteed cost control law 
(GCCL) ( )u t  and the switching rule (SR) ( , )r x t , for 
given positive scalars iδ , we can use a two-parameters 
searching methods with Matlab to find positive scalars 

,  i i mε ∈  subject to LMIs Eq. (31) to obtain symmetric 
positive matrix X  and matrices ,  .iY i m∈  Then the SR, 
GCCL and GCV can be defined as: 

{ }

( , )

* 1

( , ) arg min ,

1( ) ( ) ( ),

(0) (0).      

T
i m i

r x t i i
i

T

r x t x S x

u t K x t Y Xx t

J x X x

δ

∈

∗

−

=

= =

=

         (34) 

where , ,iS i m∈  are defied in Eq. (16). 
 
4 Numerical Example 

Consider the uncertain switched linear system in Eq. 
(1) with two subsystems [23]. 

{ }
( , ) ( , ) ( , ) ( , )

0

( ) ( ) ( ) ( ),

( , ) : 1,2 ,   ,     

(0) [1 0 1] .

r x t r x t r x t r x t

T

x A A x t B B u t

r x t m t Z

x x

+

= + Δ + + Δ

∈ = ∈

= = −

�

     (35) 

The system parameters are described as follows: 

1 1

1 1

1 2

0.75 0.6 0 1 2
0 1.65 0 ,  2 0 ,

0.2 0 1.65 0 1

0.1 0.2 0 0.1 3
 0.5 0 0.3 ,  3 1 ,

0 0.4 0 0 1

0 0.3 0.5 0.25 4.25 1
0.5 0 0.4 ,  0 0.5 2.5 ,
0.2 0 0.6 0 0.75 0.25

A B

C D

N A

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

{ }

2 2

2 2

1 3 0.1 0.3 0.6
3 1 ,  0 0.2 0 ,
0 1 0.4 0 0.3

0.8 0 0.5 0.3 0
0 0.24 ,  0 0.5 0.4 ,  

0.4 0.16 0.2 0.7 0

,     1,   1,2 .i i i

B C

D N

F I iδ δ

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= ≤ ∈

 (36) 
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Also, we consider the following symmetric positive 
definite weighted matrices 

1 2 1 20.3 ,  Q Q I R R I= = = =                 (37) 

Note that the two subsystems of system Eq. (35) are 
unstable. The aim is to find guaranteed cost 
controller ( , )( ) ( )r x tu t K x t= , switching signal ( , )r x t  and 

GCV 0 0
TJ x Px∗ =  for the switched system Eq. (35) with 

the cost function weighted matrices given in Eq. (37). 
This problem was discussed in [23]. Solving the 
obtained LMIs problem, they found an upper bound of 
the GCV as 20.3628J ∗ = . Here, the results of our 
proposed method are compared with the results in [23]. 
We perform the following steps for designing the 
switching signal and guaranteed state-feedback 
controller in the presented method. 

Step 1. 1δ  and 2δ  are selected as 1 20.5, 0.5δ δ= = . 
Step 2. Solving LMIs Eq. (31) we obtain: 

1 2

1

2

0.7,   0.3,
0.2195 0.0376 0.0704

  0.0376 0.1818 0.0444 ,  
0.0704 0.0444 0.1488

0.0129  0.1023 0.0562
,

-0.0542 -0.0229 -0.0554 

0.0536 0.0936 0.1064
 . 

0.0237 0.1473 0.0409 

X

Y

Y

ε ε= =

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

        (38) 

and thus, 

1

5.4200 -0.5330  -2.4066
-0.5330 5.9864 -1.5332  , 
-2.4066 -1.5332 8.3161

P X −

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

      (39) 

Step 3. Guaranteed cost controller gains are by: 

1
1 1

1
2 2

-0.1697 0.7345 0.39561 ,  
 -0.2094 -0.0328 -0.41770.5

-0.0221 0.5215 0.86561 .
 -0.0683 1.1407  0.08070.5

K Y X

K Y X

−

−

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

(40) 

Step 4. The GCV 0 0 18.5494TJ x Px∗ = = . 
Step 5. Obtain the switching strategy as Eq. (15) for 

known scalars and matrices in Step 2. 
Figs. 1 and 2 depict the states 1 2,x x , and 3x  and 

switching signal of proposed method in this paper and 
method [23], starting from an initial condition 

0 [1 0 1]Tx = − . Comparing states in Fig. 1 and Fig. 
2 show that, the states in proposed method are smoother 
than states in [23] and tend to zero faster. Comparing 
the guaranteed cost obtaining from two methods shows 
that, GCV J ∗  proposed in this paper is less than that 
obtained by [23]. Figs. 3 and 4 show that the number of 
switching in two methods. 
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Fig. 1 State trajectory of the closed-loop system of Eq. (35) 
(our method). 
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Fig. 2 State trajectory of the system Eq. (35) (Method [23]). 
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Fig. 3 Switching signal for the system Eq. (35) (our method). 
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Fig. 4 State trajectory of the system Eq. (35) (Method [23]). 
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Based on a proposed switching law in [23], the 
closed-loop system is quadratic D-stable and the closed-
loop cost function value is not more than a specified 
upper bound. This specific upper bound strictly depends 
on the center ( )α  and the radius ( )r  of disk ( , )D rα  

(i.e. 0 02
T PJ x x

r
≤ , note that P  depends on α ), where, 

the closed loop system under our proposed switching 
law is exponentially stable and the upper bound on the 
given cost function only depends on P . 
 
5 Conclusion 

Switching strategy must be chosen consciously, 
because it may lead to asymptotic or exponential 
stability. The main objective of this paper was to 
propose a new switching strategy to provide exponential 
stability in GCC design for a class of discrete-time 
uncertain switched linear systems. Our switching design 
method was based on CLF technique and applying 
exponential stability theorem. Furthermore, the 
sufficient condition on the existence of guaranteed state-
feedback control was presented in the form of LMIs. 
Finally, convergence rate of states was determined. 
Numerical example and comprehensive comparison 
show the practicality and validity of the proposed 
method. 
 
Appendix 

Lemma 4. (Schur complement [32]). For a given 

symmetric matrix 1 2

2 4

,T

W W
W

W W
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 where, 1 4,W W  are 

square matrices, the following three conditions are 
equivalent: 

1
1 4 2 1 2

1
4 1 2 4 2

( )   0
( )  0  0

( ) 0  0

T

T

i W
ii W and W W W W

iii W and W W W W

−

−

<

< − <

< − <

       (A1) 

Lemma 5. (Rayleigh’s inequality [34]). Suppose 
that n nA R ×∈  is a symmetric positive definite matrix, 
then: 

2 2
min max( ) ( ) ,  T nA x x Ax A x x Rλ λ≤ ≤ ∀ ∈      (A2) 

where min ( )Aλ  and max ( )Aλ  denote the smallest and 
largest positive eigenvalues of matrix A , respectively. 
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