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H∞ Sampled-Data Controller Design for Stochastic Genetic 
Regulatory Networks 
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Abstract: Artificially regulating gene expression is an important step in developing new 
treatment for system-level disease such as cancer. In this paper, we propose a method to 
regulate gene expression based on sampled-data measurements of gene products 
concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with 
stochastic nonlinear differential equation. To synthesize feedback controller, we formulate 
sampling process as an impulsive system. By using a new Lyapunov function with 
discontinuities at sampling times, state feedback gain that guarantees exponential mean-
square stability and H∞ performance is derived from LMIs. These LMIs also determine the 
maximum allowable time between sampling points. A numerical example and a practical 
application are presented to justify the applicability of the theoretical results.  
 
Keywords: Gene Regulatory Networks, Impulsive Systems, Linear Matrix Inequality, 
Sampled-Data Control. 

 
 
 
1 Introduction1 
Gene Regulatory Networks (GRNs) are complex 
networks of numerous genes and proteins with mutual 
interactions. These networks control various cell 
functions such as cell growth, differentiation, 
proliferation and apoptosis by regulating gene 
expression. Recent advances in cellular scale 
measurement techniques such as DNA microarray 
technology provide an incentive to probe underlying 
mechanisms of coherent behavior of living organisms. 
Since cellular networks are dynamic systems and full of 
feedbacks, it seems that studying GRNs in the context 
of systems theory will provide valuable insight into the 
functionality of these systems. 

To analyze biochemical networks quantitatively, 
various mathematical models have been used. In many 
cases, differential equations are efficient tools for 
investigating dynamical behavior of GRNs [1] and [2]. 
In [3], GRNs are modeled by nonlinear differential 
equation in the form of Lur’e systems. Based on this 
model, stability of GRNs in the presence of noise and 
delay has been investigated [3-5]. In [6-10], less 
conservative conditions have been obtained which are 

                                                 
Iranian Journal of Electrical & Electronic Engineering, 2015. 
Paper first received 2 Feb. 2015 and in revised form 25 Aug. 2015. 
* The Authors are with the Department of Electrical Engineering, 
Tarbiat Modarres University, Tehran, Islamic Republic of Iran. 
** The Author is with the Department of Mathematical Sciences, 
Tarbiat Modarres University, Tehran, Islamic Republic of Iran. 
E-mails: m.mohammadian@modares.ac.ir, momeni_h@modares.ac.ir 
and tahmasebi@modares.ac.ir. 

dependent on delay’s interval. In Refs. [11] and [12], by 
considering random delays, delay-probability-
distribution-dependent stability conditions have been 
derived. Filter design for stochastic systems such as 
gene regulatory networks have been studied in [13] and 
[14]. 

Regulating gene products concentration in an 
appropriate range is essential for cells to continue their 
normal life so that dramatic changes in concentrations 
may lead to life-threatening disease. For example, it is 
believed that high level concentration of anti-apoptotic 
proteins leads to cancer [15]. Recently, discovery of 
RNAi mechanism enables researchers to silence target 
gene expression [16]. RNA interference is a post-
transcriptional mechanism in which small interfering 
RNA (SiRNA) degrades encoded RNA and prevents 
further protein translation. This ability motivates 
scientists to synthesize new bio-drugs. Due to inherent 
feedback mechanism in gene networks, simply 
administration of SiRNA in order to change protein 
concentration is not sufficient [17]. Therefore, to 
reorganize abnormal gene expression level, we should 
consider system level analysis in designing therapeutic 
inputs. 

Recently, artificial control of gene expression has 
received considerable attention from various researchers 
[18-20]. In [18] and [19], H∞ state feedback controller 
has been designed for stochastic GRNs with constant 
delay. In [20], memory state feedback design for 
stochastic GRNs with time varying delay has been 
considered. In all of [18-20], however, the controller is 
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designed in continuous time and it is assumed that 
system states are always available. This assumption is 
not possible in real world applications. Where control 
inputs are only implementable as sampled signals. In 
[21], finite time H∞ controller problem has been 
investigated for discrete time GRNs. Discrete time 
models are not equal to nonlinear continuous time 
GRNs even at sampling points. In addition, this 
approach ignores the phenomena within the sampling 
intervals such as ripples. In [22], by using input delay 
approach, sampled data controller has been designed for 
gene regulatory networks. However, in [22] stochastic 
noise and disturbance hasn’t been considered. Due to 
small number of molecules in cellular environment, 
stochastic noises and disturbances has a major role in 
cellular behavior. To solve such problems, we employ 
impulsive approach to design H∞ sampled-data 
controller for stochastic GRNs. 

Sampled-data systems have been investigated 
thoroughly during past decades. In classic method, the 
continuous time system is transformed into a discrete 
time system. It should be noted that these two systems 
are equivalent only at sampling times. Since GRNs are 
nonlinear, the transformed system is not equivalent to 
the initial continuous system even at sampling times. 
Also, classic methods disregard inter-sample behavior 
of the system. To deal with such an issue, lifting 
technique has been presented in [23] and [24]. This 
approach is although too conservative in dealing with 
parametric uncertainty. In addition, this method cannot 
be used in non-periodic sampling cases. Recently, input 
delay approach has been proposed to deal with uncertain 
sampling times [25] and [26]. In this approach, sampled 
input is modeled by continuous input with 
corresponding delay. By using this approach, H∞ 
sampled data filter has been design for Gene regulatory 
networks [27]. In [28], by introducing new 
discontinuous Lyapunov function for impulsive 
systems, stability of uncertain sampled-data systems 
with non-identical sampling intervals has been studied. 

In this paper, we aim to design a state feedback 
controller which guarantees H∞ performance based on 
sampled data measurements. It should be noted that due 
to random nature of biochemical reactions in cellular 
environment, gene expression is a noisy process leading 
to considerable fluctuations in gene products level. So, 
it is necessary to consider these fluctuations in 
designing treatment protocols. To model these noisy 
effects, multiplicative Gaussian noises are added to 
translation and transcription dynamics. Sampling 
process is modeled by defining new variables which 
jump impulsively at sampling times. We propose new 
Lyapunov function with jump at sampling times to take 
into account the stochastic disturbances and sampling 
process. Then, by using appropriate slack matrices, 
applying congruence transformation and change of 
variables, we derive sufficient conditions ensuring 
mean-square exponential stability and H∞ performance. 

Since these conditions are presented in the form of 
LMIs, the feedback gain can easily be obtained by using 
numerical solvers. 

In contrast to the methods in [18-20], the presented 
method can be used when sampled data information are 
available. By considering inter-sample behavior, this 
method provide better disturbance attenuation than 
discrete time approach presented in [21] Input delay 
approach which is used in [22] leads to more 
conservative results. In addition, presence of noise and 
disturbance reduce controller performance seriously. 
While MPC approach provided in [29] is fragile in the 
presence of model’s uncertainties and disturbances, our 
approach is robust against exogenous disturbances. 

This paper is organized as follows: In section 2 we 
present the model of stochastic Genetic regulatory 
networks and give some definitions and preliminaries. 
In section 3 we provide the main results on controller 
design. Section 4 involves a simulation example to 
verify the effectiveness of the results. In section 5, we 
give the conclusion of the paper. 
 
2 System Description and Preliminaries 

In this paper, the following genetic regulatory 
networks are considered [3]: 
dm

Am(t) Bg(p(t)) l
dt
dp

Cp(t) Dm(t)
dt

= − + +

= − +
            (1) 

in which 

1 2

1 2

( ) ( ), ( ), , ( )

( ) ( ), ( ), , ( )

T
n

T
n

m t m t m t m t

P t p t p t p t

= …⎡ ⎤⎣ ⎦

= …⎡ ⎤⎣ ⎦
                             (2) 

i im ( ), p ( )t t ∈Թ  represent concentrations of mRNA 
and protein of i’th gene. The parameters in Eq. (1) are 
as folllows: 

( )
( )
( )

[ ]

1 2 n

1 2 n

1 2 n

T
1 2 n

A diag a ,a , , a ,

C diag c ,c , , c , 

D diag d ,d , ,d ,

l l l l ,

= …

= …

= …

= …

                                             (3) 

[ ]T
1 1 2 2 n n( ) (g(p( )) g p ( ) g p ( ) () g ) ,(p )t t t t= …  

These parameters contain information about 
chemical reaction rates and interaction between nodes. 
ai and ci determine the degradation rates of the 
corresponding mRNA and protein and di represents the 
translation rate. B∈Թnൈn shows the structure of 
feedback influences of proteins on mRNA production. 
Nonlinear function Eq. (4) describe this influence 
quantitatively, in which iβ  is positive constant and Hi is 
Hill coefficient. li is basal rates of mRNA production in 
transcription process. 

( ) ( ) ( )( )i iH H
i i ig x x / / 1 x /β β= +            (4) 
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For convenience, we shift an equilibrium point  
( )* *m , p  to origin by letting ( ) ( ) *m t m t m= − , 

( ) ( ) *p t p t p= − . Thus we have: 

( ) ( )( )

( ) ( )

dm Am t Bf p t ,
dt
dp Cp t Dm t ,
dt

= − +

= − +
                 (5) 

where ( )( ) ( )( ) ( )*f p t g p t g p= − . gi is monotonically 
increasing function with bounded derivative, therefore 
for all a, b∈Թ with a b≠  

( ) ( )
0 .

−
≤ ≤

−
i i

i

g a g b
k

a b
                            (6) 

Since ( ) f .  is derived by subtracting a constant from 

( )g . , we conclude 

( ) ( )( )gf p f p K p 0− ≤                             (7) 

where ( )g 1 2 nK diag k ,k , , k= … . 
Real biological networks are subjected to intrinsic 

noises and external disturbances. Therefore, we consider 
gene regulation network as follows: 

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

m

m m

p

p p

dm Am t Bf p t E v t dt
dt

g m t , p t d t ,

dp Cp t Dm t E v t dt
dt

g m t , p t d t ,

ω

ω

⎡ ⎤= − + +⎣ ⎦

+

⎡ ⎤= − + +⎣ ⎦

+

         

        

         (8) 

where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T
m m1 m2 mn

T

p p1 p2 pn

t t t t

t t t t

ω ω ω ω

ω ω ω ω

⎡ ⎤= …⎣ ⎦

⎡ ⎤= …⎣ ⎦
            (9) 

are both n-dimensional independent Brownian motions 
defined on the probability space { }( )t, , , PΩ F F . where 

Ω , F , { }tF , and P  are respectively sample space, σ-
algebra, filter generated by Brownian motion and 
probability measure. Functions ( ) ( )m pg .,. ,g .,.  satisfy 

( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

T
m m

T T T T
m1 m1 m2 m2

T
p p

T T T T
p1 p1 p2 p2

Tr g m t , p t g m t , p t

m t G G m t p t G G p t

Tr g m t , p t g m t , p t

m t G G m t p t G G p t

≤

+

≤

+

                (10) 

and miG 0≥  and ( )piG 0, i 1, 2≥ = . We assume that 

disturbance signal belongs to [ ]( )2L 0, ,∞ R . 
We assume that we can sample protein and mRNA 

concentrations, and we are interested in designing 

sampled-data controller. We define 

( ) ( ) ( ) TT Tx t m t p t⎡ ⎤= ⎣ ⎦ . Therefore, we have: 

( ) ( ) ( )( ) ( ) ( )
( )( ) ( )
( )

f udx t Ax t B f x t B u t Ev t dt

g x t d t

y Lx t

ω

⎡ ⎤= + + +⎣ ⎦
+

=

 (11) 

where: 
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m
f

p
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p
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t
t ,L L L ,

t

 f x t f p t ,g x t

diag g m t , p t ,g m t , p t ,

ω
ω

ω

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
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⎣ ⎦

= =

                 (12) 

y(t) is control output, and u(t)=Kx(tk), k k 1t t t +≤ <  
is sampled-data state feedback. tk represents the 
sampling point. We assume that there exist M 0τ >  such 
that k 1 k Mt t τ+ − ≤  for all k 0≥ . We define new 
variable ( ) ( ) [k k k 1z t x t ,   t t , t )+= ∈∶ . Therefore, we 

have ( ) ( ) k k 1u t Kz t ,   t t t += ≤ < . The derivative of this 
variable is equal to zero between sampling times, but 
experience jump at sampling points. 

From Eq. (7) and Eq. (10), we conclude: 

( )( ) ( )( ) ( )( )
( )( ) ( )( )( ) ( ) ( )

( )1 1 2 2

T
g

T T T

m p m p

f x t f x t Kx t 0,  K 0 K

Tr g x t g x t x t G Gx t , 

G diag G G ,G G

⎡ ⎤− ≤ = ⎣ ⎦

≤

= + +

    (13) 

 
Definition 1 [27]: The system in Eq. (11) with 

( )v t 0=  is said to be exponentially mean-square stable 
if there exist two scalars ν > 0 and δ > 0 such that: 

( ){ } ( ){ }2 20−≤E Eδtx t νe x                                       (14) 

Definition 2 [27]: The system in Eq. (11) is said to 
be exponentially mean-square stable with the γ 
disturbance attenuation if the dynamics are 
exponentially mean-square stable with definition 1 and 
under the zero initial condition, the following 
disturbance attenuation level is satisfied: 

( ){ } ( ){ }2 20−≤E Eδtx t νe x                                       (15) 

 
3 Main Results 

In this section, we synthesize sampled-data state 
feedback controller which provide exponential mean-
square stability of GRN. Then the sufficient conditions 
that guarantee H∞ performance of the controller are 
derived. 
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Theorem 1: There exists a state feedback gain K 
such that the GRN system in Eq. (11) with zero 
disturbance is exponentially mean-square stable if there 
exist symmetric and positive definite matrices Q, 
Γ=diag(γ1, γ2, …, γn) matrices Y, 

TT T T
1 2 3N N N N⎡ ⎤= ⎣ ⎦  and positive constants ε1, ε2, ε3 

and c satisfying the following matrix inequalities: 

( )

( )
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Ω Υ
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Ω Υ
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in which 
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and State feedback gain is derived as K=YQ-1. 
Proof: Consider the following Lyapunov function: 

( ) ( ) ( )( ) ( ) ( )
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( ) ( ) ( )

( )
( ) ( )( ) ( )( )( )
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where 

( ) ( ) ( )( ) ( )o f ur t Ax t B f x t B Kz t= + +                      (19) 

Notice that if ( ) ( ) ( )( ) kV x t , z t , t 0    for t sτ = ≠ , 

we can conclude that ( ) ( )Tx t Px t 0=  and 

( )( ) ( ) ( )( ) ( ) ( )( )T
M 1t x t z t X x t z t 0τ τ− − − = . If P > 

0 and X1 > 0, we have ( )x t 0=  and ( ) ( )z t x t 0= = . 

Therefore, if ( ) ( )z t 0,  x t 0≠ ≠ , then V > 0 for kt s≠ . 
By using Itô formula, we have:  
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derive that: 
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in which M1 cϖ τ= − . On the other hand, for any matrix 
N and an augmented vector 

( ) ( ) ( ) ( )( )T T T Tt x t z t f x tξ ⎡ ⎤= ⎣ ⎦  with appropriate 
dimension, the following inequality could be written for 
any positive definite matrix Sϖ  and Rϖ : 
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( )
( )

( ) ( ) ( )
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        (23) 

Based on Jenson inequality and Itô isometry we 
have: 
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Then from Eq. (24) and Eq. (13), we get 
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V x t , z t , t cV x t , z t , t

2x t Pr t cx t Px t

τ τ+ ≤

+

L
 

( ) ( ) ( )T T
M M 1x t G P S X Gx tτ τ+ + +  

( ) ( ) ( ) ( ) ( )1T T T
M o or t Rr t t N S N tτ ξ ϖ ξ−+ +              (25) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( )( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( )

1T T T

T

M 1

T
M o 1

T

t t N R N t 2 t N x t z t

x t z t 1 c t X x t z t

2 t r t X x t z t

2f x t Λ f x t Kx t

τ ξ ϖ ξ ξ

τ τ

τ τ

−+ − −

− − − − −

+ − −

− −

 

Then, Eq. (25) can also be rewritten as follows: 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )( ) [ ] ( )

( )( ) ( ) ( )

1T T T

T
M 1

T
M 1 u f

V x t ,z t , t cV x t ,z t , t

t t t t N R N t

I
t I 1 c t X I I 0 t

0

I
2 t t I X A B K B t ,

0

τ τ

ξ Ωξ τ ξ ϖ ξ

ξ τ τ ξ

τ τ ξ ξ

−

+ ≤

+

⎡ ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥ ⎡ ⎤+ − − ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

L

           (26) 

where 

[ ]

T

T

u f u f

T

T T
M u u f

T
f

I I
0 P A B K B A B K B P 0
0 0

I A I
0 cP I 0 0 K B R A B K B 0
0 B 0

Ω

τ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤+ + + ×⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

( ) [ ]T
M M 1G P S X G I 0 0τ τ+ +                               (27) 

( ) [ ] [ ]T1 T T

T

T

N S N N I I 0 I I 0 N

0 0
0 Λ K 0 I K 0 I Λ 0
I I

ϖ −+ − − − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤− − − −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Necessary and sufficient conditions to derive 
negative definiteness of the right hand side of Eq. (26) 
are 

( ) [ ]M 1 M

T

T

1 u f M u f 1

I I
I 1 c X I I 0 I

0 0

I
X A B K B A B K B X I 0,

0

Ω τ τ

τ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − − + − ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤+ − <⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

[ ] ( ) 1 T
1 M

I
I X I I 0 N R N 0

0
Ω τ ϖ −

⎡ ⎤
⎢ ⎥− − − + <⎢ ⎥
⎢ ⎥⎣ ⎦

         (28) 

By using schur complement Eq. (28) can be written 
as 

( )

( )

1 1
1

M M 1

M 2

1
M

2 1
1

M M 1

m 2 M

1
M

M

Ω Υ

* P S X
* *
* *

N Υ
0 0

0
S 0

* R

Ω Υ N

* P S X 0
* * S
* * *
* * *

Υ N
0 0

ˆ

0

ˆ

0
R 0

* R

τ τ

τ

ϖ
τ

τ τ
ϖ

τ τ

τ
τ ϖ

−

−

−

−

⎡
⎢
⎢ − + +
⎢
⎢
⎢⎣

⎤
⎥
⎥ <
⎥−
⎥

− ⎦
⎡
⎢
⎢ − + +
⎢ −⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥

− ⎥
⎥− ⎦

    

  (29)
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where 

[ ] [ ] [ ]

( ) [ ]

T

T

1 u f u f

T T

M 1

T

T

T

T T
M 1 u

T
f

I I
Ω 0 P A B K B A B K B P 0

0 0

I
0 cP I 0 0 N I I 0 I I 0 N
0

I
I 1 c X I I 0

0

0 0
0 Λ K 0 I K 0 I Λ 0
I I

I A
I X K B

0

ˆ

B

τ

τ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥+ − − − −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤− − − −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡⎡ ⎤
⎢⎢ ⎥+ − ⎢⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣

[ ] [ ]

T TT

T T
M u 1

T
f

T

T

2 u f u f

T T

T T

T T
1 2 u

T
f

A I
K B X I

B 0

I I
Ω 0 P A B K B A B K B P 0

0 0

N I I 0 I I 0 N

G A
Υ 0 ,Υ K B ,

,

ˆ

0 B

,

τ

⎤ ⎡ ⎤ ⎡ ⎤
⎥ ⎢ ⎥ ⎢ ⎥+ −⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

(30)

 

Pre and post multiplying Eq. (29) by diag(P-1, P-1, 
Λ-1, I, P-1, I) and diag(P-1, P-1, Λ-1, I, P-1, I, P-1), and 
defining 1R Pε= , 2S Pε= , 1 3X Pε=  and 1Q P−= , we 
have: 

( )
1 1 M 2

1
M 2 M 3

2
1

M 1

Ω Υ N Υ
0 0* 1 Q 0

Q 0* *
* Q* *

τ

τ τ
ϖ

τ

−

−

⎡ ⎤
⎢ ⎥
⎢ − + + ⎥ <⎢ ⎥−⎢ ⎥

−⎢ ⎥⎦⎣

ε ε
ε

ε

( )
2 1

1
M 2 M 3

2

Ω Υ N

* 1 Q 0
* * Q
* * *
* * *

τ τ
ϖ

−

⎡
⎢
⎢ − + +
⎢ −⎢
⎢
⎢
⎣

ε ε
ε                      (31) 

m 2 M

1
m 1

1

Υ N
0 0

00 0
Q 0

* Q

τ τ

τ
ϖ

−

⎤
⎥
⎥
⎥ <
⎥

− ⎥
⎥− ⎦

ε
ε

 

where 

[ ]

[ ] [ ]

( ) [ ]

1
1 u f

T

T1
u f

T T

T

3 M
1

I
Ω 0 AQ B KQ B Λ

0

I I
AQ B KQ B Λ 0 0 cQ I 0 0

0 0

N I I 0 I I 0 N

I 0 0 QK
I 1 cτ Q I I 0 0 0 0

0 KQ 0 2Λ

−

−

−

⎡ ⎤
⎢ ⎥ ⎡ ⎤= ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤+ +⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − − −

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥− − − − − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

ε

  

T TT T T T

T T T T T T
M 3 u M u 3

1 T 1 T
f f

+
I Q A Q A I

τ I Q K B τ Q K B I
0 Λ B Λ B 0− −

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

ε ε   (32) 

[ ]

[ ] [ ] [ ]

1
2 u f

T

T1
u f

T T
3

I
Ω 0 AQ B KQ B Λ

0

I I
AQ B KQ B Λ 0 0 cQ I 0 0

0 0

I
N I I 0 I I 0 N I Q I I 0

0

−

−

⎡ ⎤
⎢ ⎥ ⎡ ⎤= ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤+ +⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥− − − − − − −⎢ ⎥
⎢ ⎥⎣ ⎦

ε

 

( )

T T T

T T
1 2 u

1 1 T
f

1

0 0 QK QG QA
0 0 0 , Υ 0 ,Υ QK B
KQ 0 2Λ 0 Λ B

N diag Q,Q,Λ NQ

− −

−

⎡ ⎤ ⎡ ⎤⎡ ⎤−
⎢ ⎥ ⎢ ⎥⎢ ⎥

− = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

 

By defining Y=KQ, we reach LMIs in Eq. (16). 
Therefore, from Eq. (16) we can conclude that 

( ) ( ) ( )( )
( ) ( ) ( )( ) k

V x t , z t , t

cV x t , z t , t 0,       for t s

τ

τ+ ≤ ≠

L
               (33) 

Now, applying Ito inequality we have: 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )
( ) ( )( )

( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1

1

k

ct

Ts
cs

T
0 1

S
cs

0

1 1 1

1 1 1

t
cs

S

e V x t , z t , t V x 0 , z 0 , 0

x s P
e 2 g x s d s

x s z s X

V x s , z s , s
e ds

cV x s , z s , s

V x s , z s , s

V x s , z s , s

V x s , z s , s
e ds

cV x s , z s , s

τ τ

ω

τ

τ

τ

τ

τ

τ

−

−

−

+ + +

− − −

=

⎛ ⎞
⎜ ⎟+
⎜ ⎟+ −⎝ ⎠
⎛ ⎞
⎜ ⎟+
⎜ ⎟+⎝ ⎠

⎡ ⎤
⎢ ⎥+ +…⎢ ⎥−⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟+
⎜ ⎟+⎝ ⎠

∫

∫

∫

L

L

        (34) 
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From Eq. (33) and 

( ) ( ) ( )( ) ( ) ( ) ( )( )
i

V x t , z t , t V x t , z t , t  

for t s ,1 i k

τ τ− − −≤

= ≤ ≤
       (35) 

we can write, 

( ) ( ) ( )( ) ( ) ( ) ( )( )cte V x t , z t , t V x 0 , z 0 , 0τ τ⎡ ⎤ ≤⎣ ⎦E   (36) 

And finally, the following inequality is derived. 

( ) ( ) ( ) ( )2 2ct
min maxλ P x t e λ P x 0−⎡ ⎤ ⎡ ⎤≤⎣ ⎦ ⎣ ⎦E E           (37) 

In the following theorem, controller gains which 
guarantees H∞ performance is synthesized. 

Theorem 2: Consider the disturbance attenuation 
level γ  is given. There exists a state feedback gain K 
such that the GRN system in Eq. (11) with zero 
disturbance is exponentially mean-square stable and 
under zero initial condition provide guaranteed H∞ 
performance, if there exist symmetric and positive 
definite matrices Q, ( )1 2 nΓ diag , , ,γ γ γ= …  , matrices 

Y, 
TT T T T T

1 2 3 4 5M M M M M M⎡ ⎤= ⎣ ⎦  and positive 
constants ε1, ε2, ε3 and c satisfying the following matrix 
inequalities: 

( )

( )

1 1
1

M 2 M 3

1

M 2 3

2 M
1

M 1

* 1 Q
* *
* *
* *

M
0 0 0

0,1 c Q 0 0
* Q 0
* * I

Π Δ

τ ε τ ε
Ξ

τ Δ Δ

ε τ
τ ε

−

−

⎡
⎢

− + +⎢
⎢=
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥ <− −
⎥

− ⎥
⎥− ⎦

 

( )
( )

( )

2

2 1
1

M 2 M 3

2 M

M 2 M 3

1
M 1

M 1 M

M

* 1 Q 0
* * 1 c Q
* * *
* * *
* * *

M
0 0 0
0 0 0

0,
Q 0 0

* 1 c Q 0
* * I

Ξ

Π Δ

τ ε τ ε
τ

τ Δ τ Δ

τ ε
τ ε τ

−

−

=

⎡
⎢

− + +⎢
⎢ − ∫ −⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
<⎥

− ⎥
⎥− − ⎥

− ⎥⎦
   (38) 

where 

[ ]

( ) [ ]

T TT T T T

T T T T
u u

1 T T
f f

T

3 M

I I IQ A Q A
0 0 0Y B Y B

Π cQ I 0 0 0
0 0 0ΓB ΓB
0 0 0E E

I I I
I I I

M M 1 Q I I 0 0
0 0 0
0 0 0

0 0 QK

τ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−

−

ε

[ ]

T

2

00
0* 0 0 0

0 0 0 I
0* * 2Γ 0
I* * * 0

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 

T TT T T T

T T T T
u u

M 3 M 3T T
f f

I IQ A Q A
I IY B Y B

0 0ΓB ΓB
0 0E E

τ τ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

ε ε  

[ ]

[ ]

T TT T T T

T T T T
u u

2 T T
f f

T

3

T

I I IQ A Q A
0 0 0Y B Y B

Π cQ I 0 0 0
0 0 0ΓB ΓB
0 0 0E E

I I I
I I I

M M Q I I 0 0
0 0 0
0 0 0

0 0 QK 0
* 0 0

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−

ε

[ ]2

0
00

0 0 0 I
0* * 2Γ 0
I* * * 0

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

( )
TT T

T T
u

1 2 3T
f

T

M diag Q, Q,Γ, I MQ

QLQG QA
00 Y B

Δ ,Δ , Δ
00 ΓB
00 E

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

            (39) 

controller gain is given by K=YQ-1. 
Proof: since Eq. (38) implies Eq. (16), based on the 

theorem 1, exponential mean-square stability of 
dynamics is guaranteed when ( )v t 0= . We consider 
this new Lyapunov function, 

( ) ( ) ( )( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )( ) ( )( )( )

( )( ) ( ) ( )( ) ( ) ( )( )

T

t
T T

M
t t

t
T

M
t t

T
M 1

V x t , z t , t x t Px t

t s r s Sr s d

t s Tr g x t Sg x t

t x t z t X x t z t

τ

τ

τ

τ

τ

τ τ

−

−

=

+ − +

+ − +

+ − − −

∫

∫
          (40) 
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where 

( ) ( ) ( )( ) ( ) ( )f ur t Ax t B f x t B Kz t Ev t= + + +          (41) 

By defining ( ) ( ) ( ) TT Tt t v tξ ξ⎡ ⎤= ⎣ ⎦ , and using the 
similar method in theorem 1, it is easy to show that, 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

( ) ( )
( ) ( ) ( )( ) ( )

( )( ) ( )
[ ] ( )

( )( )( ) [ ]

2 22

T

1T T
M

TT
M u f

1

M 1

V x t , z t , t

cV x t , z t , t y t v t

 t Π t

t  t M 1 c R M  t

2 t  t A B K B E

X I I 0 0  t

I
I

1 c t X I I 0 0
0
0

τ

τ γ

ξ ξ

τ ξ τ ξ

τ τ ξ

ξ

τ τ

−

⎧ ⎫⎪ ⎪ ≤⎨ ⎬
+ + −⎪ ⎪⎩ ⎭

+ −

⎡ ⎤+ − ⎣ ⎦
−

⎡ ⎤
⎢ ⎥−⎢ ⎥− − − −
⎢ ⎥
⎢ ⎥
⎣ ⎦

×

E
L

      (42) 

where 

[ ]

T

T

u f u f

T

I I
0 0

Π P A B K B E A B K B E P
0 0
0 0

I L
0 0

cP I 0 0 0 L 0 0 0
0 0
0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎡ ⎤+ + ⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

( ) [ ] ( )( )
[ ] [ ]

[ ]

( )( )( ) [ ]

T
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1 T
M M 1 M

T T

T
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0K B
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P S X G I 0 0 0 M 1 c S M
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0 0 I
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K 0 I 0 Λ 0 0 0 I
I 0 0
0 I 0

1 c t X I I 0 0

τ

τ τ τ

γ

τ τ

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤+ +⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

+ + + −

− − − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤− − − ×⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− − −

×

0
0
Λ K 0 I 0

I
0

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤− −⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

           (43) 

 
If we have 

( ) ( )( )

( )( )( ) [ ]

( )( )
[ ]

1 T
M

M 1

T

M u f

1

Π t M 1 c R M  

I
I

1 c t X I I 0 0
0
0

2 t A B K B E

X I I 0 0  0

τ τ

τ τ

τ τ

−
+ −

⎡ ⎤
⎢ ⎥−⎢ ⎥− − − −
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤+ − × ⎣ ⎦
− <

×

              (44) 

then 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )2 22

V x t , z t , t
0

cV x t , z t , t y t v t

τ

τ γ

⎧ ⎫⎪ ⎪ <⎨ ⎬
+ + −⎪ ⎪⎩ ⎭

E
L

   (45) 

for all nonzero ( )v t . Since 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), , ,0 lim , , ,
↑

≤
k

k k k t t
x t e t z t V x t e t z t τ t , 

we have, 

( ) ( )( )
( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

t
2 22

0

2 22t

0

y s v s ds

y s v s
ds
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τ τ

⎧ ⎫⎪ ⎪− =⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞−
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟+⎨ ⎬⎝ ⎠
⎪ ⎪
− +⎪ ⎪⎩ ⎭

∫

∫

E

E L

   (46) 

Under zero initial condition, we get 

( ) ( )( )
( ) ( )

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )

t
2 22

0

2 22t

0

2 22

t

0

y s v s ds
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y s v s

V x s , z s , s ds 0

cV x t , z t , t

γ

γ

τ

γ

τ

τ

E

E

E

L

L

⎧ ⎫⎪ ⎪− ≤⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟ ≤⎨ ⎬⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞−
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟+ ≤⎨ ⎬

⎜ ⎟⎪ ⎪⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭

∫

∫

∫

                (47) 

Therefore, the H∞ performance is satisfied. 
Sufficient and necessary condition to satisfy Eq. (44) is 

[ ]

[ ]

T
M 1 u f

T

u f 1

Π I I 0 0 X A B K B E

A B K B E X I I 0 0

τ ⎡ ⎤+ − ⎣ ⎦

⎡ ⎤+ −⎣ ⎦
 

( ) [ ]M 1

I
I

1 c X I I 0 0  0
0
0

τ

⎡ ⎤
⎢ ⎥−⎢ ⎥− − − <
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

( )( ) 1 T
M MΠ M 1 c R M 0τ τ

−
+ − <          (48) 

By using schur complement Eq. (48) can be written 
as, 
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( ) ( )
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where 
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⎣ ⎦ ⎣ ⎦
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⎢ ⎥
⎢ ⎥⎣ ⎦

        (50) 

 
Pre and post multiplying Eq. (50) by 
( )1 1 1 1diag P ,P , ,I,I,P ,IΛ− − − − , ( )1 1 1 1 1diag P ,P , ,I,I,P ,I,PΛ− − − − −  

and defining 1R Pε= , 2S Pε= , 1 3X Pε= , Q=P-1 and 
Y=KQ LMIs in (38) are obtained. 

4 Simulations 
In this section, we examine our results to show the 

effectiveness of our method. 
Example 1: Consider a GRN system with the 

following parameters: 
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0.4 0 0 0 0 1
A 0 0.2 0 , 2.5 1 0 0 ,

0 0 0.1 0 1 0

1 0 0 1 0 0
0.8 0 1 0 , 0.9 0 1 0 ,

0 0 1 0 0 1

0.2 0.18 2.5
0.15 , 0.21 , 2.5 .
0.1 0.25 2.5

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

m p

   B    

D   C    

E    E    l

      (51) 

The regulation function is assumed to be 

( ) ( ) ( )
2
i

i i 2
i

p
g p    i 1, 2,3

1 p
= =

+
. It can be easily getting 

that 3 3 8k = . We consider the intensity functions of 
intrinsic noises and the output matrices as follows: 

[ ] [ ]

m1 m2

p1 p2

m p

G 0.25I,G 0.25I, 
G 0.25I, G 0.25I,

L 0.2 1 1 1 ,   L 0.2 1 1 1

= =
= =

= =

                      (52) 

To synthesize controller gain, we choose γ = 0.5 and 
τM = 0.2. The controller gain is derived as follows 

2.4611 0.1705 0.1265
K 0.1151 2.5384 0.1686

0.1606 0.1155 2.5725

0.8222 0.1769 0.5920
0.6100 0.8094 0.1717
0.1610 0.6133 0.7925

− − −⎡
⎢= − − −⎢
⎢− − −⎣

− − ⎤
⎥− − ⎥
⎥− − ⎦

                 (53) 

The simulation results are presented in Figs. 1 and 
Fig. 2. Initial values are coincide with equilibrium point: 

[ ]

* *

T

m p

7.634 8.32 0.8982 6.785 7.394 0.7984

⎡ ⎤ =⎣ ⎦     (54) 

The disturbance signal is considered as 
v(t) = 5exp(-0.1t). The disturbance attenuation level is 
derived smaller than γ = 0.5. 
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Fig. 1 mRNAs concentration in the presence of control. 

Then, we consider nonzero initial states and show 
the results in Fig. 3. As can be seen, errors approach 
zero exponentially. 

Next, we compare our method with the one proposed 
in [22] in presence of uncertainty and noise. We 
consider similar system presented in (51), and for 

M 0.1τ =  derive the feedback gain from LMIs presented 
in [22]. We simulate both systems with the noise 
intensity m1 m2 p1 p2G 0,G 0.5I, G 0.5I, G 0= = = =  and 

disturbance ( ) ( )v t 5exp 0.1t= − . As can be seen in 
Figs. 4 and Fig. 5, our method show better results. It is 
noticeable that considering exponential stability in our 
method may lead to reduction in response speed. 
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Fig. 2 proteins concentration in the presence of control. 
 
 

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

t(sec)

Er
ro

r
(m

ol
ec

ul
es

 p
er

 c
el

l)

 
Fig. 3 exponential stability in the presence of initial state. 
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Fig. 4 mRNA concentration comparison. 
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Fig. 5 protein concentrations comparison. 
 
 

 
Fig. 6 protein concentrations of repressilator network without 
control. 
 
 

Example 2: The repressilator is a synthetic genetic 
circuit which is proposed by Elowitz and Leibler [30]. It 
consists of three genes in a loop. Each gene has an 
inhibitory effect on the next gene production. Following 
model has been suggested for this gene network [30]: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 0 12
3

2 0 22
1

3 0 32
2

1 1 1

2 2 2

3 3 3

d m t m t
dt 1 p t
d m t m t
dt 1 p t
d m t m t
dt 1 p t
d p t m t p t
dt
d p t m t p t
dt
d p t m t p t
dt

α
α

α
α

α
α

β β

β β

β β

= + −
+

= + −
+

= + −
+

= −

= −

= −

                           (55) 

In which α0 = 0.03 molecule per cell.min-1, β = 2 
min-1 and n = 2. By considering α = 5, the equilibrium 
point will be: 

[ ]

* *

T

m p

61.25 61.25 61.25 61.25 61.25 61.25

⎡ ⎤ =⎣ ⎦       (56) 

Fig. 6 shows the behavior of the network in presence 
of noise with intensity m1 m2G 0, G 0.25I, = =  

p1 p2G 0.25I, G 0= = , disturbance ( ) ( )v t 5exp 0.1t= − . 
Parameters of the system will be: 

f

1 0 0 0 0 1 1
A 0 1 0 ,   B 5 1 0 0 ,  B 1

0 0 1 0 1 0 1

1 0 0 1 0 0
D 0.2* 0 1 0 ,  C 0.2* 0 1 0

0 0 1 0 0 1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

      (57) 

[ ] [ ]

m p

m1 m2 p1 p2

m p

0.2 0.18
E 0.15 ,   E 0.21

0.1 0.25
G 0,G 0.25I, G 0.25I, G 0

L 0.33* 1 1 1 ,   L 0.33* 1 1 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= = = =

= =

 

For τM = 1.1478 min, Lm = 0.2[1 1 1], Lp = 0.2[1 1 1] 
and γ = 1, feedback gain is derived as: 

1.3207 0.1564 0.2366
K 0.2333 1.3214 0.1634

0.1727 0.2502 1.3297

4.9342 0.4463 1.3277
1.3282 4.9817 0.3437

0.3322 1.4127 4.9815

− − −⎡
⎢= − − −⎢
⎢− − −⎣

− − − ⎤
⎥− − − ⎥
⎥− − ⎦

                  (58) 

This controller can be implemented by using silico 
feedback control for in vivo regulation as shown in [30]. 
Systems trajectories in presence of designed controller 
are shown in Fig. 7. 
 
 

 
Fig. 7 protein concentrations of repressilator network with 
control. 
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10 Conclusion 
In this paper, we have dealt with the problem of 

Sampled-data H∞  control design for gene regulatory 
networks with stochastic perturbations. Based on 
impulsive approach and exploiting discontinuous 
Lyapunov functions, sampled data feedback control 
with prescribed H∞  performance is designed for 
stochastic GRNs. By using stochastic analysis methods 
the existing results for sampled-data control of 
deterministic systems is developed for stochastic GRNs. 
Finally, the effectiveness of the proposed method for 
H∞  control design has been shown by simulations. 
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