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Abstract: The use of wavelets in denoising, seems to be an advantage in representing well 
the details. However, the edges are not so well preserved. Total variation technique has 
advantages over simple denoising techniques such as linear smoothing or median filtering, 
which reduce noise, but at the same time smooth away edges to a greater or lesser degree. 
In this paper, an efficient denoising method based on Total Variation model (TV), and 
Dual-Tree Complex Wavelet Transform (DTCWT) is proposed to incorporate both 
properties. In our method, TV is employed to refine low-passed coefficients and DTCWT is 
used to shrink high-passed noisy coefficients to achieve more accurate image recovery. The 
efficiency of our approach is firstly analyzed by comparing the results with well-known 
methods such as probShrink, BLS-GSM, SUREbivariate, NL-Means and TV model. 
Secondly, it is compared to some denoising methods, which have been reported recently. 
Experimental results show that the proposed method outperforms the Steerable pyramid 
denoising by 8.5% in terms of PSNR and 17.5% in terms of SSIM for standard images. 
Obtained results convince us that the proposed scheme provides a better performance in 
noise blocking among reported state-of-the-art methods. 
 
Keywords: Complex Wavelet Transform, Denoising, Dual-Tree, Steerable Pyramid, Total 
Variation. 

 
 
 

1 Introduction1 
Images are used in almost every discipline of science 
and engineering. Many of them contain noise that 
makes the observers' job difficult to study the image 
objects. There are many reasons behind the presence of 
noise in most of the images, including the artifacts of 
the image acquisition devices, e.g., cameras. Hence, 
image denoising plays an important role in the image 
and video processing. Removing unknown additive 
noises from measured corrupted images has received 
much attention in the past fifty years. A complex 
wavelet transform based on the steerable structure has 
been reported [1]. In this paper, a new wavelet-domain 
structure-driven denoising technique with complex 
bandpass filters has been introduced. However, the 
lowpass filter smoothens the image. So, the output was 
blurred and some details were missed in this method. 

A minimum risk shrinkage operator for multi-scale 
Poisson image denoising has been proposed [2]. The 
authors employed Skellam distribution to minimize the 
risk function in the multiscale Poisson image denoising 
setting. 
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An efficient algorithm for adaptive noise reduction 
with wavelet packet thresholding function has been 
presented [3]. In this method, the wavelet packet 
transform was used along with Optimal Wavelet Basis 
(OWB) for the image decomposition. Then, for each 
wavelet subband, an adaptive threshold was considered. 

Rabbani and Gazor have employed the complex 
wavelet transform and unconditional Bessel K-form 
prior density in order to derive Maximum A-Posteriori 
(MAP) and minimum mean-squared error (MMSE) 
estimators for video noise reduction in the 3D space [4]. 

A research on solving Total Variation (TV) problem 
based on Bayesian MAP has been introduced [5]. In this 
work, a combination of Reweighted Least Squares 
(RLS) algorithm with MAP estimation has been used to 
approach a filter for TV denoising. An Exponential Total 
Variation model (ETV) with a fast numerical design 
algorithm has been proposed [6]. The authors utilized 
higher-order TV models to overcome undesirable 
‘block’ effects in denoised images. 

Wang et al. have analyzed TV model and proposed 
an edge-adaptive guiding function based on standard 
gradient for remote-sensing images [7]. S-model (The 
proposed method name) could adjust the smooth 
intensity around edge and keep texture details perfectly. 
Afonso and Sanches have employed total variation to 
reconstruct images or volumes from a partial set of 
observations [8]. They could achieve a lower 
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reconstruction error with applying the Augmented 
Lagrangian framework. Another research on Photo-
Response Non-Uniformity (PRNU) noise extraction has 
been done for digital cameras [9]. This method has 
employed total variation technique and could recover 
noisy images faster than wavelet-based methods. 

Sun et al. have introduced a biorthogonal balanced 
multi-wavelet algorithm with armlets order [10]. In 
another work, Riesz transform has been employed to 
construct wavelet templates that are best matched to a 
particular class of images [31]. They have applied 
Principal Component Analysis (PCA) to optimize the 
basis functions for image denoising and feature 
extraction. However, the introduced algorithm is poor 
and cannot stop noise properly. 

In this paper, we present a new denoising approach 
based on steerable pyramid decomposition. The main 
contribution of this paper is to improve the PSNR 
criterion in this framework utilizing the Total Variation 
model (TV) and Dual-Tree Complex Wavelet 
Transform (DTCWT). The proposed approach is 
compared with some well-known related denoising 
methods such as probShrink, BLS-GSM, 
SUREbivariate, NL-Means and TV model. 

The remainder of the paper is organized as follows: 
Section 2 describes the principles of three denoising 
algorithms briefly. Steerable Pyramid algorithm with 
decomposition and reconstruction block diagram with 
relevant formulas is given in part one. Complex dual-
tree wavelet transform and its advantages over discrete 
wavelet transform is reviewed in part two; and in part 
three, total variation model is explained with 
minimization energy equation. Experimental results are 
presented and discussed in Section 4. We compare the 
performance of the proposed method with several 
existing approaches in image denoising issue. Finally, in 
Section 6, a conclusion of the paper is given. 
 
2 Background 

Before introducing the proposed scheme, three 
denoising algorithms, which are related to the 
introduced framework, are reviewed. 
 

2.1  Steerable Pyramid Algorithm 
Wavelet decomposition has a disadvantage of shift-

invariant. To overcome this problem, the Steerable 
Pyramid has been introduced [11]. The Steerable 
Pyramid is a linear multi-scale, multi-orientation image 
decomposition that provides a useful front-end for 
image-processing and computer vision applications. The 
block diagram of the steerable pyramid algorithm is 
shown in Fig. 1. First, the image passes through high-
pass ܪ and low-pass ܮ filter. 

The low-pass subimage is then divided into a set of 
oriented bandpass subimages using filters 
ሺܤଵ, ,ଶܤ … ,  ሻ and a low(er)-pass subimage using filterܤ
 .ଵ, where k is the number of bandpass filtersܮ

 
Fig. 1 Decomposition and reconstruction of the steerable 
pyramid algorithm. 
 
 

In order to avoid aliasing in the band-pass part, the 
band-pass components are not downsampled. Therefore, 
the low(er)-pass subband is sampled by a factor of 2 in 
the horizontal and vertical directions. The recursive 
construction of a pyramid is achieved by inserting a 
copy of the shaded portion of the diagram at the location 
of the solid circle. The set of filters used in this linear 
decomposition are highly constrained. First of all, to 
ensure elimination of the aliasing terms, the filter ܮଵ 
should be band-limited, i.e. [11]. 

ଵሺ߱ሻܮ ൌ 0, |߱|	ݎ݂   (1)                                         2/ߨ

Furthermore, to avoid amplitude distortion, the 
transfer function of the system should be equal to unity. 

ሺ߱ሻ|ଶܪ|  ሺ߱ሻ|ଶܮ| |ܮଵሺ߱ሻ|ଶ |ܤሺ߱ሻ|ଶ


ୀଵ

൩ ൌ 1 (2) 

Moreover, in order to cascade the system 
recursively, another constraint must be verified: 

ଵሺ߱/2ሻ|ଶܮ| ൌ ଵሺ߱ሻ|ଶܮ| |ܮଵሺ߱ሻ|ଶ |ܤሺ߱ሻ|ଶ


ୀଵ

൩  (3) 

The angular constraint on the band-pass filters BK is 
determined by the condition of steerability and can be 
expressed as: 

ሺ߱ሻܤ ൌ ߠሺݏሺ߱ሻሾെ݆ܿܤ െ  ሻሿ (4)ߠ

where for ߠ ൌ argሺ߱ሻ , ߠ ൌ ሺ݊/ߨ݇  1ሻ, and 

ሺ߱ሻܤ ൌ ඩܤሺ߱ሻ



ୀଵ

 (5) 

 
2.2  Complex Dual Tree Wavelet 

The wavelet transform and its family have been 
considered recently in the signal and image denoising 
issue [14]. An edge preserving image denoising 
technique and a filter bank framework, which integrates 
wavelet filter bank and diamond quincunx filter bank, 
has been reported [13]. 

Similar to the discrete wavelet transform, the Dual-
Tree Complex Wavelet Transform (DT-CWT) is a 
multiresolution transform with decimated subbands 
providing perfect reconstruction of the input [16]. DT-
CWT is an enhancement to the Discrete Wavelet 
Transform (DWT), with important wavelet properties. 
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In contrast, it uses analytic filters instead of real ones 
and thus overcomes problems of the DWT at the 
expense of moderate redundancy. 

The DT-CWT is implemented using two real DWTs; 
DT-CWT can be informed by the existing theory and 
practice of real wavelet transforms. The DT-CWT gives 
much better directional selectivity when filtering multi-
dimensional signals, and there is an approximate shift 
invariance. The 2D Dual Tree Complex Wavelet 
Transform can be implemented using two distinct sets 
of separable 2D Wavelet bases, as shown below [16]: 
߰ଵ,ଵሺݔ, ሻݕ ൌ ߶ሺݔሻ߰ሺݕሻ,			߰ଶ,ଵሺݔ, ሻݕ ൌ ߶ሺݔሻ߰ሺݕሻ 
߰ଵ,ଶሺݔ, ሻݕ ൌ ߶ሺݕሻ߰ሺݔሻ,			߰ଶ,ଶሺݔ, ሻݕ ൌ ߶ሺݕሻ߰ሺݔሻ 
߰ଵ,ଷሺݔ, ሻݕ ൌ ߰ሺݔሻ߰ሺݕሻ,			߰ଶ,ଷሺݔ, ሻݕ ൌ ߰ሺݔሻ߰ሺݕሻ 
߰ଷ,ଵሺݔ, ሻݕ ൌ ߶ሺݔሻ߰ሺݕሻ,			߰ସ,ଵሺݔ, ሻݕ ൌ ߶ሺݔሻ߰ሺݕሻ 
߰ଷ,ଶሺݔ, ሻݕ ൌ ߶ሺݕሻ߰ሺݔሻ,			߰ସ,ଶሺݔ, ሻݕ ൌ ߶ሺݕሻ߰ሺݔሻ 
߰ଷ,ଷሺݔ, ሻݕ ൌ ߰ሺݔሻ߰ሺݕሻ,			߰ସ,ଷሺݔ, ሻݕ ൌ ߰ሺݔሻ߰ሺݕሻ 

(6) 

The relationship between wavelet filters ݄ and ݃ is 
shown below 

݃ሺ݊ሻ ൎ ቐ
݄ሺ݊ െ 1ሻ						݂ݎ	݆ ൌ 1

݄ሺ݊ െ 0.5ሻ			݂ݎ	݆  1
	 (7) 

where ݆ is the decomposition level.  
 

2.3  Total Variation 
Total variation denoising model has been proposed 

by Rudin, Osher, and Fatemi (ROF) [17]. The idea 
behind the model is to exhibit the reconstructed image 
as the minimizer of an energy functional 

ݑ ൌ arg݉݅݊௨∈ሺஐሻ൛|ݑ|  ݑ||ߣ െ ݂||మ
ଶ ൟ (8) 

for a suitable parameter ߣ	  	0. Here Ω is a domain in 
ܴே with Lipschitz boundary modeling the image region, 
e.g. a computer screen. The function f represents the 
observed and possibly noisy image, which is an element 
of ܮଶሺΩሻ. The regularization functional is the BV-
seminorm, defined via 

1 2| | 1, ( )
| | sup ( . )

c

BV
g g C

u u g dx
  

   
(9) 

where |݃| ൌ ඥ ଵ݃
ଶ  ݃ଶ

ଶ and ܥଵሺΩሻ denotes the class of 
continuously differentiable functions of compact 
support in Ω .The key feature of total variation 
regularization is the fact that it allows for (and even 
favours) discontinuous solutions, i.e., images with sharp 
edges. 
 
 

 
Fig. 2 Proposed denoising algorithm. 

Nevertheless, this regularization suppresses 
oscillations and can still eliminate high-frequency noise. 
 
3 The Proposed Algorithm 

Fig. 2 illustrates the proposed denoising scheme. In 
this framework, complex dual-tree wavelet transform is 
employed, because wavelets are able to denoise the 
particular signals and images far better than 
conventional filters that are based on Fourier transform 
design, and that do not follow the algebraic rules obeyed 
by the wavelets. Total variation denoising is used for the 
low-pass band because of its advantage over linear 
smoothing or median filtering, which reduces noise but 
at the same time smooths away edges to a greater or 
lesser degree. By contrast, total variation denoising is 
remarkably effective at simultaneously preserving edges 
whilst smoothing away noise in flat regions, even at low 
signal-to-noise ratios [18]. The process is as follows: At 
first, a steerable pyramid transform is applied to the 
noisy image to decompose it into low and high bands. 
The high-pass bands are refined by employing DTCWT 
in different levels and the low-pass band is denoised in 
the total variation method. Finally, a denoised image is 
achieved by applying inverse steerable pyramid 
transform. Table 1 shows the approach in details. 

We will show in next section that this structure 
improves noise eliminating compared to traditional 
steerable pyramid denoising. 
 
 
Table 1 Algorithm for proposed denoising method 
1- Apply the n-level steerable filter decomposition to the noisy 

image, yielding a set of bandpass channels ࢙ࢌ
ሺሻሺ,  .ሻ࢙ࣘ,

(steered output in direction ࢙ࣘ at level ) 
2- Start TV denoising and reconstruction process at the 
coarsest scale by setting  ൌ ࢞ࢇࣅ With .ࡸ ൌ .  and max 
irritation=300 
3- For level j=1 to j=L-1 

     3-a Apply DTCWT to each directional bands࢙ࢌ
ሺሻሺ,  ሻ࢙ࣘ,

to produce different frequency subbands labeled 
,ࡴ,ࡸ ,ࡰ  where k=1,…,JJ ,ࢂ
     3-b- Leave lowpass band ࡸ unchanged 
     3-c Calculate the local noise variance ࢋ࢙࣌

  as [15] 

ࢋ࢙࣌           
 ൌ

ሻࡰሺࢇࢊࢋ

.ૠ
 

   For each subband ࡰ,ࡴ,  apply NeighShrink to estimate ࢂ
unknown noiseless coefficient as [12] 
                3-c-1 For each noisy wavelet coefficient ࢝ to be 
shrinked, it incorporates a square neighbouring window 
 .centered at it. The window size can be 3×3 or 5×5

                 3-c-2 Calculate summation ࡿ
 ൌ ∑ ࢝


∋,  

                 3-c-3 Modify the noisy coefficient by  

ෝ࢝                     ൌ ࣁ where ࣁ࢝ ൌ ሺ	ܠ܉ܕ െ
ࢋ࢙࣌


ࡿ
 , ሻ 

   3-d Obtain the reconstructed subband ࡰ,ࡴ,  after ࢂ
applying NeighShrink rule. 
3-e Generate a reconstructed version of the image at level j. 
4- Apply inverse Steerable Pyramid transform to modified 

directional subbands ࢙ࢌ
ሺሻሺ,  .ሻ to obtain refined image࢙ࣘ,
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4 Results and Discussion 
There are some failures in the previous research. In 

Ref. [1], a complex wavelet transform has been used to 
decompose the noisy image and isotropic lowpass filter 
to refine the image in a manner appropriate to the local 
structure. We have not used lowpass filter in our 
scheme. Hence, the edges and details are preserved 
better than Ref. [1]. Fig. 3 shows this difference 
between our and Ref. [1] algorithm. 
 
 

 
a- Noisy image (PSNR=18.57 dB) 

 
b- Ref. [1] (PSNR=27.24 dB) 

 
c- Our algorithm (PSNR=27.58 dB) 

Fig. 3 Denoising of “boat” image by Ref. [1] and our 
algorithm. It is obvious that our scheme gives more details in 
the output denoised image. 

In conventional steerable pyramid denoising, a 
thresholding rule such as ‘soft’, ’semisoft’, ‘hard’ [19] 
or ‘block’ [20] is used to shrink the noisy coefficients. 
The hard thresholding is defined as 

ݕ ൌ ൜
ݔ ݂݅ |ݔ|  ܶ
0 ݂݅ |ݔ|  ܶ

 (10) 

Where x and y are noisy and denoised coefficients 
and threshold level T is applied. This thresholding 
performs a binary decision that might introduces 
artifacts. A less aggressive nonlinearity is the soft 
thresholding 

ݕ ൌ max ൬1 െ
ܶ
|ݔ|
൰  (11) ݔ

In our method, the ‘block’ shrinkage is applied to 
DTCWT coefficients and low-pass band is refined by 
TV denoising. 

We have found that the number of decomposition 
level in Steerable Pyramid transform and Dual-Tree 
Complex Wavelet Transform (DTCWT) of input image 
affects on output quality. Fig. 4 shows the results of 
different Steerable Pyramid decomposition levels versus 
DTCWT levels for “cameraman” image. 

It is clear that increasing decomposition level does 
not improve PSNR. However, it increases 
computational cost in the algorithm. According to this 
figure, we have chosen 3 levels for Steerable Pyramid 
transform decomposition and 3 levels for Dual-Tree 
Complex Wavelet Transform decomposition 
empirically. 

Two famous criteria, PSNR and SSIM [21], are used 
to evaluate the performance of the proposed framework. 
PSNR and SSIM have been calculated for standard 
images with the size of 512×512 pixels in various noise 
levels. The images are corrupted with Additive White 
Gaussian Noise (AWGN). Table 2 compares PSNRs 
and SSIMs of traditional steerable pyramid and 
proposed method. It is clear that our scheme improves 
these criteria efficiently. 
 
 

 
Fig. 4 The effect of Steerable Pyramid decomposition levels 
and DTCWT levels on output PSNR for “cameraman” image 
ߪ) ൌ 30ሻ. 
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Table 2 Comparative PSNR and SSIM values with different 
noises for traditional Steerable pyramid denoising and our 
method. 

    PSNR SSIM 

512×512 
image 

sigma 
Noisy 
image 

Steerable 
pyramid 

denoising 
[11] 

Proposed 
method 

Noisy 
image

Steerable 
pyramid 

denoising
[11] 

Proposed 
method

L
en

a  

20 22.11 29.38 31.68 0.42 0.77 0.87 

30 18.59 27.69 29.79 0.32 0.68 0.81 

40 16.09 26.31 28.43 0.26 0.60 0.75 

50 14.15 25.08 27.39 0.23 0.54 0.70 

60 12.57 23.95 26.73 0.20 0.49 0.69 

B
arb

ara  

20 22.11 29.49 30.08 0.60 0.54 0.54 

30 18.59 28.12 29.60 0.56 0.52 0.52 

40 16.09 26.73 28.93 0.54 0.51 0.51 

50 14.15 25.42 28.32 0.52 0.51 0.51 

60 12.57 24.22 27.91 0.51 0.50 0.51 

P
eppers  

20 22.11 27.67 30.84 0.43 0.73 0.81 

30 18.59 26.46 29.08 0.32 0.65 0.76 

40 16.09 25.38 27.59 0.26 0.59 0.71 

50 14.15 24.37 26.55 0.22 0.53 0.68 

60 12.57 23.39 25.92 0.19 0.49 0.66 

B
oat  

20 22.11 26.59 29.23 0.49 0.67 0.76 

30 18.59 25.65 27.59 0.38 0.61 0.70 

40 16.09 24.76 26.30 0.30 0.55 0.66 

50 14.15 23.87 25.36 0.26 0.50 0.62 

60 12.57 23.00 24.76 0.23 0.45 0.60 

C
ou

p
le  

20 22.11 26.21 28.91 0.51 0.67 0.78 

30 18.59 25.29 27.04 0.39 0.61 0.71 

40 16.09 24.47 25.87 0.32 0.56 0.66 

50 14.15 23.63 25.04 0.27 0.51 0.61 

60 12.57 22.79 24.48 0.23 0.47 0.58 

 
 

Fig. 5 illustrates comparative results of the 
traditional steerable denoising and proposed framework 
for the image ‘Couple’. According to the obtained 
results, it is obvious that our method yields a better 
quality. We have implemented Ref. [11] denoising 
method in Pentium 5 vs core 2 duo computer and 
compared the time execution in method [11] with our 
method. The average time estimated in method [11] is 
0.92 seconds and in our method is 8.7 seconds. 

Table 3 compares the ability of noise blocking of 
introduced scheme with that of well-known denoising 
methods. The best PSNR is bold in every column. 

 
a- Noisy image (sigma=30) 

 
b- Steerable Pyramid denoising [11] 

 
c- Proposed method 

Fig. 5 Visual results of Steerable pyramid denoising and 
proposed method for cropped image ‘couple’. 
 
 

The results convince us that our method has higher 
PSNRs in most noise levels. 

Another comparison is given in Table 4, where 
results of the introduced framework are compared to 
recent reported denoising methods for images ‘Lena’, 
‘Barbara’ and ‘Peppers’. Similar to previous tables, this 
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table also confirms the superiority of our framework 
over recent reported methods. 
 
 
Table 3 The compared results of the denoising images in 
different methods. 

σ 20 30 40 50 60 

Input PSNR 22.11 18.59 16.09 14.15 12.57 

Test image Lena (512 × 512) 

ProbShrink 
[22] 

31.24 29.36 28.01 27.01 26.52 

BLS-GSM [23] 31.32 29.47 28.21 27.19 26.71 

SUREbivariate 
[24] 

31.37 29.56 28.31 27.37 26.77 

NL-means [32] 31.16 28.3 26.98 25.8 24.46 

TV model [17] 30.6 28.87 27.56 26.58 25.63 

Our method 31.68 29.79 28.43 27.39 26.73 

Test image Barbara (512 × 512) 

ProbShrink 
[22] 

28.4 26.27 24.89 23.86 23.32 

BLS-GSM [23] 28.28 25.92 24.44 23.5 22.87 

SUREbivariate 
[24] 

27.98 25.83 24.54 23.7 23.15 

NL-means [32] 27.42 24.16 23.69 22.57 21.89 

TV model [17] 26.32 24.73 23.85 23.17 22.79 

Our method 30.08 29.6 28.93 28.32 27.91 

Test image Cameraman (256 × 256) 

ProbShrink 
[22] 

28.25 26.13 24.78 23.8 22.83 

BLS-GSM [23] 28.29 26.24 24.94 24.03 23 

SUREbivariate 
[24] 

28.51 26.48 25.11 24.1 23.29 

NL-means [32] 27.59 25.23 23.44 22.28 21.51 

TV model [17] 27.91 26.12 24.98 24.02 23.1 

Our method 28.20 26.58 25.27 24.18 23.38 

 
 
Table 4 PSNR performance data of proposed scheme and 
recent state-of-the-art works. 

 LENA BARBARA PEPPERS 

 30 20 30 20 30 20 ࣌

[25] 30.77 29.04 28.55 27.38 30.57 28.83 

[26] 30.92 29.13 28.48 26.27 30.57 28.83 
[27] 28.25 25.7 26.81 24.49 26.96 25.03 
[28] 31.16 29.25 28.71 26.59 30.81 28.92 

[29] 30.61 28.73 26.57 26.36 29.31 27.85 

[30] 30.42 28.54 26.28 24.73 30.17 28.28 

OUR 
WORK 

31.68 29.79 30.08 29.60 30.84 29.08 

 

5 Conclusion 
In this paper, we presented a new steerable pyramid 

denoising method based on dual-tree complex wavelet 
transform (DTCWT) and total variation model that 
effectively produce denoised image with minimum 
artifacts. The significant purpose of the paper is to 
improve Peak Signal to Noise Ratio (PSNR) in steerable 
pyramid structure. We showed that the proposed 
structure improves steerable pyramid denoising criteria. 
In different noise level, the results demonstrated 
significant improvement over traditional steerable 
pyramid theory. Experiments were conducted on 
different test standard images, which were corrupted by 
various noise levels, to assess the performance of the 
proposed algorithm. The obtained results revealed the 
superiority of our scheme compared to some of the best 
state-of-the-art methods. In future, we plan to extend the 
introduced scheme to other wavelet families such as 
double-density dual-tree complex wavelet transform for 
further improvement in the performance. 
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