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Moving Vehicle Tracking Using Disjoint-View Multicameras 
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Abstract: Multicamera vehicle tracking is a necessary part of any video-based intelligent 
transportation system for extracting different traffic parameters; such as link travel times 
and origin/destination counts. In many applications, it is needed to locate traffic cameras 
disjoint from each other to cover a wide area. This paper presents a method for tracking 
moving vehicles in such camera networks. The proposed method introduces a new method 
for handling inter-object occlusions; as the most challenging part of the single camera 
tracking phase. This approach is based on coding the silhouette of moving objects before 
and after occlusion and separating occluded vehicles by computing the longest common 
substring of the related chain codes. In addition, to improve the accuracy of the tracking 
method, in the multicamera phase, a new feature based on the relationships among 
surrounding vehicles is introduced. The proposed feature is modeled by an exponential 
distribution and can efficiently improve the efficiency of the appearance (space-time) 
features when they cannot discriminate between correspondent and non-correspondent 
vehicles; due to noise or dynamic condition of traffic scenes. A graph-based approach is 
then used to track vehicles in the camera network. Experimental results show the efficiency 
of the proposed method.  
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1 Introduction1 
Interests in intelligent transportation systems (ITS), as 
an efficient way of monitoring and controlling traffic 
conditions, come from problems caused by traffic 
congestions; such as increase of travel time, air 
pollution, fuel consumption, and reduce of 
transportation infrastructure efficiency. In ITS, different 
sensors provide raw data for the transportation 
management center (TMC) via a communication 
network. At the TMC, traffic parameters of each site are 
analyzed and used in controlling signals and message 
displays along with other traffic control devices. 

Usage of video cameras, as powerful sensors for 
collecting different data, has some main advantages 
over traditional sensors (e.g., loop detectors). These 
include the ease of installation, maintenance, and usage. 
In addition, the cameras provide information that is 
conceivable by human operators. By the extend of using 
cameras in ITS, the role of computer vision for 
automating the process of information extraction from 
videos has become very crucial. 
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Evaluating most traffic parameters in a scene 
requires finding and tracking moving vehicles in a 
network of cameras. Traffic cameras, depending on 
their applications, may have overlapped or non-
overlapped field of views. Camera overlap is helpful for 
solving occlusion and depth estimation problems. But, 
traffic cameras are usually placed non-overlapped 
(especially in highways) and in a wide distance from 
each other to cover wide areas to provide more data. 
Tracking the objects as they move across disjoint 
camera views is a challenging task and many factors 
(including changing illumination conditions, different 
viewing angles, shadows, occlusions, and 
environmental noise) introduce major challenges in the 
process. 

In this paper, we present a method for tracking 
vehicles in a network of disjoint-view cameras. The 
method provides different modules for tracking vehicles 
in videos captured by single cameras and tracks them in 
a multicamera fashion. It presents new methods for 
handling occlusion and improves the precession of 
multicamera tracking process. The rest of the paper is 
organized as follow. Section II reviews some related 
work on vehicle tracking. In Section III, the proposed 
multi-tracking method is explained. Experimental 
evaluations of the proposed methods are presented in 
Section IV. Finally, the paper conclusion is derived in 
Section V. 
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2 Related Work 
There are several frameworks for visual surveillance 

reported in the literature [1], [2] and [3]. In this paper, 
the framework reported in [1] is employed; because of 
its completeness and widespread usage. This framework 
is divided into several stages. Reviewing the work 
related to each individual stage is a rather 
comprehensive task. Several surveys exist which can 
offer a proper introduction to the subject [4, 5, 6]. 

There are many tracking methods introduced in the 
literature. They exhibit different abilities for handling 
dynamic situations. For tracking multiple vehicles, it is 
important to maintain the trajectory of moving vehicles 
before, during, and after an occlusion situation. In [7], 
three different general tracking methods are proposed; 
namely, point tracking, kernel tracking, and silhouette 
tracking. 

In point tracking [8], [9] and [10], objects are 
represented by some points that are corresponded in 
consecutive frames. But, the method encounters 
difficulties in handling the occlusion. 

In kernel tracking [11], [12] and [13], the 
representation of object is based on the primitive object 
region and the parametric motion of the object is 
computed from one frame to the next.  The advantages 
are in the use of simple geometric shapes and the 
applicability of kernel tracking for both rigid and non-
rigid objects. A well-known kernel tracker is based on 
the mean-shift method [24]. Mean-shift tracking 
algorithm is an iterative scheme that is based on 
histogram comparison of the original object in the 
current frame and the candidate regions in the target 
frame. The aim is to maximize the correlation between 
these two histograms. Hybrid trackers that integrate the 
respective advantages of mean-shift and particle filter 
(MSPF) have achieved impressive success in robust 
tracking [25]. The pivot of MSPF is to sample fewer 
particles using particle filters. The particles are then 
shifted to their respective local maximum of target 
searching space by mean-shift. MSPF not only greatly 
reduces the number of required particles, but also 
remedies the deficiency of mean-shift. In the 
experimental result section we will compare the 
performance of our proposed tracker with mean-shift 
and MSPF methods. 

For objects with complex shapes (such as hands, 
head, and shoulders) that cannot be well described by 
simple geometric shapes, silhouette tracking provides an 
accurate shape description of objects. The goal of a 
silhouette-based object tracker is to find the object 
region in each frame by means of object edges or 
contour generated by using previous frames [14], [15] 
and [16]. However, these methods often need a training 
phase and are highly sensitive to the initialization step. 

Although many works are reported for tracking 
vehicles in a single camera phase, there are little works 

that address multicamera tracking especially with non-
overlapped field of views. In [17], Shan et al. presented 
an unsupervised learning approach for measuring edges 
and matching the appearance between non-overlapping 
views. The matching is based on computing the 
probability of two observations from different views. 
Since the method compares edge images of vehicles, the 
images should be registered together. This constrains 
the views of cameras to be somewhat similar. In [18], 
Maden et al. proposed an algorithm for tracking 
pedestrians in disjoint-view cameras that is based on 
appearance representation and is capable of dealing with 
small changes of pose. A matching strategy then 
extends along the whole available tracks. Ellis et al. [27] 
determined the topology of a camera network by finding 
the entry and exit zones of each camera and the links 
between them using the cooccurrence of entry and exit 
events, assuming that correct correspondences will 
cluster in the feature space (location and time). 

Other type of trackers is based on Bayesian 
formulation [19] and [20]. In [19], Huang and Russell 
defined a physical event space over which probabilities 
are defined. Then, given that a stream of observation of 
many objects is available and by introducing an identity 
criterion they were able to compute the probability that 
any two objects are the same. In [20], Javed et al. 
proposed an algorithm for tracking objects in a network 
of nonoverlapping cameras. By using the kernel density 
estimation, the algorithm learns the camera topology in 
the form of multivariate probability density of space-
time variables. It also learns the subspace of inter-
camera brightness transfer functions to handle the 
appearance change of an object as it moves from one 
camera to another. That framework has been followed 
in [28] and [29] with some novelties in modeling 
features. 

In this paper, we present an efficient method for 
tracking moving vehicles in a network of disjoint-view 
cameras, where more attention is paid on occlusion 
handling in the single camera tracking phase along with 
modeling new features for improving the accuracy of 
multicamera tracking. This reasoning is valid especially 
in highways where groups of vehicles tend to keep their 
relationships through the road. Matching is then 
performed separately for each pair of cameras by using 
the assignment procedure. The proposed method, in 
contrast to [19], learns the topology of movements and 
presents a general approach that works not only for two 
cameras, but also for a network of multi-cameras. 

3 Proposed Multicamera Tracking Method 
Figure 1 shows the overall block diagram of the 

proposed multicamera tracking method. It contains the 
stages of single camera tracking and fusion of 
multicamera information. 
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3.1 Single Camera Tracking 
Tracking as the process of finding and following 

interested objects in video sequences, is one of the most 
popular tasks in video surveillance methods. The input 
to a single camera tracking module is a binary mask of 
detected vehicles and the output is the trajectory of 
vehicles. These trajectories are then used for extracting 
traffic parameters. After detecting and classifying 
objects as vehicles, it is time to track vehicles in a 
sequence of frames. This is called data association; 
which is the strategy of finding the best match for 
obtained tracks. In this paper, we present a kernel 
tracker for tracking the bounding box of objects using 
Kalman filtering. The Kalman filter builds a model for 
the state of the method that maximizes the a posteriori 
probability of previous measurements. 

Figure 2 shows the pseudo code of the proposed 
vehicle tracking algorithm, which should be run on each 
frame. First, an m×n match matrix is considered for m 
tracks and n detected blobs. Then, this matrix is filled 
by the overlap of predicted tracks and detected blobs. 
This matrix can be used to analyze different cases that 
have been occurred (including appearance of new 
objects, object lost, matching, object split/merge, or any 
combination of these cases). A good tracking algorithm 
must efficiently handle these different situations. Figure 
3 shows the pseudo code of the proposed process. 

 

 
Fig. 2 Pseudo code of proposed vehicle tracking method. 

 
When no match is found for a track, the track is lost. 

But, the track should be kept alive for some frames 
while the Kalman filter continues predicting the new 
location of the track. If no match is found for that track, 
during a period of time, it will be ignored. In the case of 
object match, the Kalman filter and the track mask are 
updated. We keep a binary mask for each track for the 
occlusion reasoning algorithm that will be discussed 
next. 

Object splitting is resolved by assigning the largest 
split part with the track and creating new tracks for the 
remaining parts. Track merging or occlusion is the most 
challenging part of data association. Inter-object 
occlusion occurs when at least two blobs of tracks 
merge together. 
 

Fig. 1 Overall block diagram of proposed multicamera tracking methods. 
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Fig. 3 Pseudo code of proposed match matrix analyzer. 

 
When a new track is created, a binary mask of object 

is kept for it.  To be more resistant against noise, a 
Gaussian filter is used to smooth the mask. This mask is 
updated when a match is found for the track. Thus, the 
mask presents the most recent object shape. When 
occlusion occurs, first we try to resolve the occlusion by 
detecting tracks that are involved in that occlusion 
situation and split the region of each track. If it is not 
possible or reliable, we keep the information of 
involving tracks to be able to recognize objects after 
occlusion finishes. We explain these two steps in the 
following subsections. 
 

3.1.1 Usage of Chain Codes for Occlusion Resolving 
An occlusion case is recognized when a column of 

match matrix has more than one mark (i.e., a detected 
blob has overlaps with more than one existing track). In 
this case, occlusion has occurred among overlapping 
tracks and thus we first split them. 

The directional chain code has been widely used in 
image retrieval for its simplicity and low storage 
requirement. The first approach for representing digital 
curves using chain code was introduced by Freeman in 
1961 known as Freeman chain code (FCC). This code 
follows the object contour in a counter clockwise 
manner and keeps the track of directions as we go from 
a pixel to the next. Here, an 8-connected FCC is used to 
represent the vehicle contour. 

By keeping an updated version of the track mask, 
one can code the object contour by FCC. The shape of a 
solid object does not change widely in consecutive 
frames. Here, we use the Kalman filter not only for 
predicting the new track location but also for predicting 
 

 
Fig. 4 a) FCC of red car before occlusion {000777607766544 
465432465432444322110211}. b) FCC of blue car before 
occlusion{0007676000766644674324446543244322100021}. 
c) FCC of detected blob in occlusion interval 
{0000777607766544465444443 2465412443221000212. 

 
the new object size or even rotation angle. This 
prediction helps us to scale and rotate the mask, to 
compensate these changes. 

After updating the mask of involved tracks in 
occlusion situation, based on predicted size of the track, 
the FCC of tracks and the detected blob are extracted. 
One can expect common substrings between FCCs of 
tracks and detected blob. Figure 4 shows the vehicle 
mask before occlusion that scales in consecutive frames. 
For this mask and detected blob, FCCs are extracted 
after bring smoothed by a Gaussian filter. The next step 
is the comparison of FCCs. We used the longest 
common substring (LCS) algorithm for this comparison.  
The LCS problem finds the longest string that is a 
substring of two or more strings. One can find these 
substrings in θ(m+n) and compute them by dynamic 
programming costs θ(mn), where n and m are the 
lengths of two codes. Note that as the LCS algorithm is 
only run on the boundary of foreground mask and only 
in the occlusion situation it is not time consuming. 

The algorithm then finds other points of boundary, 
which are not visible due to occlusion, based on the 
common substring. It is probable to have more than one 
LCS in FCCs. The question is then “Which LCS is the 
best match for the track?”. Each common substring 
separates a set of points with a bounding box, which is 
assigned as the new track location. Consequently, the 
best match is the one with the least distance to the 
predicted location of the track. 

 

3.1.2 Occlusion Management 
Sometimes when the length of LCS is not so large or 

when the distance of predicted track is far from the best 
set of points, it is not reliable to split tracks. In these 
cases, we propose an occlusion reasoning strategy as 
follow (see Figure 5). 

Once it is recognized that the object splitting is not 
reliable, the reasoning algorithm can create a new 
virtual track of the merged objects and assign these 
objects as parents of a virtual track. The reasoning 
algorithm tracks the merged object until the end of 
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Fig. 6 GUI tool for creating samples or ground-truth.

 
P൫K୧

୨หO୧ଵ, O୨ଶ൯ ൌ
ሺP൫K୧

୨ሺappሻหO୧ଵ, O୨ଶ൯ ൈ P൫K୧
୨ሺstሻหO୧ଵ, O୨ଶ൯ሻן ൈ

 P൫K୧
୨ሺNሻหO୧ଵ, O୨ଶ൯

ଵିן
                                                    (3) 

in which α is the weight of space-time and appearance 
features against the neighbors’ relationships. This 
probability is high when i) two observations have a high 
similarity of appearance and their space-time features 
match together, or ii) the similarity of neighbors of two 
observations is high enough. Note that using the 
similarity of neighbors is helpful due to the fact that 
traffic conditions are dynamic and space-time features 
may not follow a single distribution. 
 
Table 1 Various features of an observation. 

Name Description Category 

Texit /Tenter 

Time of exit from 
region of interest 

(ROI) of camera or 
Time of entrance to 

ROI. 

Space-time 

Lexit /Lenter 

(x,y) location of 
exit/enter to the 

ROI. 
Space-time 

V 
Mean velocity of 

vehicle in the ROI. 
Space-time 

Col 
Mean color of 

vehicle in the ROI 
(HSV). 

Appearance 

N Set of neighbors of 
vehicle in ROI. 

Neighbors’ 
Relationship 

 

3.2.2 A Brief Review on Modeling Space-Time 
Similarity of Observations 

Kernel density estimation (or Parzen window) 
method is a nonparametric way of estimating the PDF 
of a random variable. Kernel density estimation (KDE) 
makes it possible to extrapolate the data to the entire 
population. If X1, X2, …, Xn is a d-dimensional 
independent and identically-distributed (i.i.d.) samples 
of a random variable, then the kernel density 
approximation of its probability PDF is given by 

1n
2

i1
2 i 1

1F(X) ker(H (X X ))
n H

−

=

= −∑                            (4) 

where n is the number of samples obtained from the 
learning phase, ker is a kernel, and H is a d×d 
smoothing matrix, called the bandwidth. To reduce the 
complexity, H is assumed to be diagonal (i.e., 
H=diag[h1

2,h2
2,…,hd

2]), and the diagonal elements are 
estimated using the correspondent objects in the training 
set. The multivariate kernel can be generated from the 
product of symmetric univariate kernels 

d

j
j 1

ker(X) ker(x )
=

=∏                                                     (5) 

where xj are the d-components of X. Quite often ker is 
taken to be a standard zero-mean and unit-variance 
Gaussian function. Thus, the variance is controlled 
indirectly through the parameter h by 

ker ቀ୶ି୶
୦
ቁ ൌ ଵ

√ଶ
e
ି
ሺ౮ష౮ሻ

మ

మ
మ . 

(6) 
 

We use F(X) for calculating P(Ki
j(st)|Oi

1, Oj
2) in (3). 

In our method, X is a 7D vector comprising space-time 
features of two given observations in C1 and C2, 
including Lexit of Oi

1, Lenter of Oj
2 (x,y), difference of  

Tenter of Oj
2 and Texit of Oi

1, and V of Oi
1 and Oj

2. 
 

3.2.3 A Brief Review on Estimating the PDF of 
Appearance Features 

Given two observations Oi
1 and Oj

2, we define a 
random variable Y that is the difference of the color of 
Oi

1 and Oj
2. In our method, the mean and variance of 

this variable is learned during the training phase by 
observing similar objects in that environment. 
Therefore, Y is a 3D vector representing the difference 
of HSV color model components. Fitting a Gaussian 
kernel to the mean and variance of Y, the PDF is 
obtained by 

T 1

1
3 2

1 1F(Y) exp( (Y ) (Y ))
2(2 )

−= − −μ −μ
π

∑
∑

    (7) 

where μ  is the mean and ∑ is the variance of Y, 
assuming that color channels are independent. We use 
F(Y) to compute P(Ki

j(app) |Oi
1 , Oj

2) in (3). 
 

3.2.4 Probability of Neighbors Similarity 
In this section, we explain how to model the 

neighbors’ similarity as a new feature introduced in our 
formulation. Two vehicles are considered neighbors, if 
their time distance and velocity difference are smaller 
than a threshold. Vehicles tend to keep their relationship 
as they move through highways (because of constrains 
of speed in roads and less ramps between camera sites). 
If Ni

1 denote the set of all vehicles that are the neighbors 
of vehicle i in C1 and Nj

2 denote the set of all vehicles 
neighboring vehicle j in C2, the similarity of these two 
groups is defined as 
Z ൌ |N୧ଵ |  หN୨ଶห െ 2n୫ୟ୲ୡ୦ (8) 
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where “|S|” denotes the cardinality of set S, and nmatch is 
the number of correspondent vehicles in two sets with 
close appearance similarity. Figure 7 shows the pseudo-
code of nmatch calculation. 
 

 
Fig. 7 Proposed pseudo code for computing nmatch in (11). 

As this figure shows, nmatch increases when the 
maximum appearance similarity of a member of Ni

1 
with all members of Nj

2 resides in an acceptable range. 
By having the number of matches in two sets, a new 
variable, called Z, is computed. Since nmatch is at most 
max(|N୧ଵ |, หN୨ଶห),  Z is always nonnegative, and thus we 
can model the probability of Z by an exponential 
density function (9). This function reaches its maximum 
value when the number of matches in two sets is the 
most, and decreases when nmatch reduces. β adjusts the 
slop of the exponential function and should be set so 
that when nmatch equals zero the function value vanishes. 
At this stage we can model the probability of similarity 
of neighbors of two observations by this exponential 
function. Figure 8 shows an example of the probability 
calculation. 

 
3.2.5 Finding Correspondence 

Having the probability of correspondence of each 
two corresponding observations in C1 and C2, it is time 
to find the solution matrix K, such that it minimizes (1). 
We begin with the simplest case where all vehicles 
detected in C1 are also detectable in C2. In this case, a 
most probable assignment (pairing all vehicles) can be 
found by formulating the problem as a weighted 
bipartite matching problem and using any of several 
well-known algorithms of bipartite graph matching. To 
do this, a bipartite graph is constructed where nodes in 
the left and right partitions are represented by Oi

1 and 
Oj

2, respectively, and the edge between these nodes is 
represented by -log P(Ki

j |Oi
1, Oj

2). 
 A match in a graph G = (V, E) is a subset of M 

edges E such that no two edges in M share a common 
vertex V; V= (AB) denotes a bipartite graph, where A 
and B are two kinds of vertices. A match in a bipartite 
graph assigns vertices of A to vertices of B. A 
maximum cardinality match is a match with the 
maximum number of edges. If the edges of the graph 
have associated weights, then a minimum weight match 
 

 
Fig. 8 Example of calculating probability of similarity of 
neighbors of two vehicles. Vehicles i and j are observed by C1 
and C2 cameras. Ni

1 and Nj
2 are neighbors of i and j. Here, 

nmatch is set to 2 (because green vehicle in Ni
1 has maximum 

appearance similarity with green vehicle in Nj
2) that is more 

than threshold. This also is true for two yellow vehicles. From 
Eq. (8), Z=(3+2)-4 =1, so similarity of this two sets is βe-β. 

is a match for which the sum of edge weights is 
minimized. A minimum-weight maximum-cardinality 
match is a match with the least weight. The best known 
algorithm with polynomial time bound for weighted 
bipartite match is the classical Hungarian method due to 
Kuhn [23], which runs in time O(|V| (|E |+ |V| log|V|)). 
Weighted bipartite match algorithms can be 
implemented efficiently and can be applied to graphs 
with reasonably large sizes. 

In a general case, vehicles can appear or disappear in 
connections between cameras (i.e., number of 
observations is not equal in two cameras). A minimum 
weight maximum cardinality match, on the other hand, 
would always return the match with maximum 
cardinality. It guarantees that every vertex in A is 
matched to a vertex in B. Thus, to handle this case, we 
used the method in [19] that adds extra nodes to each 
partition. With m and n vehicles in C1 and C2, 
respectively, the bipartite graph has m+ n nodes in each 
part to allow all possibilities. Extra nodes are called 
virtual nodes. In this form, three kinds of edges are 
distinguishable; namely, edge between two real nodes, 
edge from a real node to a virtual node, edge from a 
virtual node to a real node, and edge between two 
virtual nodes. The edge weight of the first kind is as the 
case for which there is no virtual nodes in the method 
(described above). Edge weights of the second and third 
groups are equal to the –log of the probability of exit 
between two camera sites and –log of the probability of 
entrance between two cameras. The probability of 
exit/enter can be assessed as a prior knowledge in the 
training phase. The forth group has edges of zero 
weight. 

4 Experimental Results 
As there is no standard database available for 

evaluating the performance of disjoint-view 
multicamera trackers, in this paper, the proposed 
tracking method was tested on two provided datasets. 
The first dataset is a set of videos captured from Resalat 
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tunnel prepared by Tehran traffic control center. Each 
sequence in this dataset has a frame rate of 25 
frames/second and resolution of 640×480 pixels/frame. 
The sequences are captured by two cameras placed in 
east to west of the tunnel in opposite directions. This set 
is in low quality and populous. The second dataset is 
recorded by our group for this work. It contains a set of 
videos captured from Kordestan highway by three 
cameras placed in a distance of about 500 m apart. Each 
sequence has a frame rate of 25 frames/second and 
resolution of 576×720 pixels/frame. Vehicles move in 
one direction from north to south. There are some ramps 
between camera sites. Also, some vehicles miss or 
appear in successive cameras. Figure 9 shows the 
location of these cameras. 

Conducted experiments consider two steps of single 
camera tracking and multicamera information fusion. 
Each step has its related metric for evaluation. 

 
 

 
Fig. 9 Location of cameras in Kordestan highway (Resalat 
tunnel is also visible). 

 

Fig. 10 Single camera tracking results. 

In the single camera tracking method, the efficiency 
of tracker is defined by the ratio of the number of 
vehicles tracked correctly to the actual number of 
vehicles as defined in [20] 

 
ݕ݂݂ܿ݊݁݅ܿ݅݁

ൌ
Number of Vehicles correctly tracked by method

actual number of vehicles
ൈ 100

(10) 

Table 2 lists the result of this criterion along with the 
comparison of our proposed method with [24] and [25], 
on the two datasets. As these results show, the 
efficiency of the proposed single camera tracker is the 
same or even more than the hybrid method which is 
based on mean-shift and particle filtering. As expected, 
the results on Resalat tunnel are low due to low 
resolution of the frames. Figure 10 shows the result of 
this tracker on some frames of this dataset. 

 
Table 2 Result of Eq. (25) on two datasets. 

Proposed 

Method 

Mean-

Shif + 

Particle 

Filtering 

[31] 

Mean-

shift 

Method 

[30] 

Number 

of 

Frames 

Camera Site 

%93 %93 %68 855 

Kordestan 

Highway, 

Camera 1 

%95 %95 %76 1300 

Kordestan 

Highway, 

Camera 2 

%88 %82 %70 1770 

Kordestan 

Highway, 

Camera 3 

%89 %73 %68 260 

Resalat 

Tunnel,  

Camera 1 

%75 %62 %50 305 

Resalat 

Tunnel, 

Camera 2 

 
For multicamera tracker, a training phase is required 

to learn the corresponding vehicles in that environment. 
As shown in Figure 6, a GUI was developed to facilitate 
the manually creation of correspondent vehicles. In the 
training phase, it is not needed to find correspondence 
for all vehicles, but the number of samples should be 
high enough to estimate the space-time and appearance 
probabilities properly. In the testing phase, 
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correspondences are computed using the proposed 
multicamera vehicle tracking algorithm. In our 
assignment strategy, a real node may correspond to a 
real or virtual node. Therefore, it is probable that the 
number of matches be less than the actual number of 
matches. We use the recall and precision criteria to 
evaluate the process [7] 

 
݈݈ܽܿ݁ݎ ൌ 100  ൈ  
true number of matches method ϐinds

actual number of matches   
(11) 

 
 ݊݅ݏ݅ܿ݁ݎ
ൌ  100 

ൈ 
true number of matches method ϐinds
total number of matches method ϐinds 

(12) 

Tables 3 and 4 summarize these results for two 
scenarios of passing from Camera 1 to 2, and from 2 to 
3. In each case, about 35 vehicles pass from each 
camera where about 12 vehicles are common between 
Cameras 1 and 2, and about 15 vehicles are common 
between cameras 2 and 3. Results of Equation (3) for 
different values of α are presented, where α=1 is true for 
the case in which neighbors’ relationships are not 
considered at all; which is equal to the method of Javed 
in [20]. For brevity, formulas are written concisely. To 
better decide on the best α, the F-score measure is used 
that is in fact the harmonic mean of precision and recall. 

ܨ െ ݁ݎܿݏ ൌ ଶ୮୰ୣୡ୧ୱ୧୭୬ൈ୰ୣୡୟ୪୪
୮୰ୣୡ୧ୱ୧୭୬ା୰ୣୡୟ୪୪

                                     (13) 
Figure 11 shows the result of the F-score measure on 

the data of Table 3 and 4. As the results show, for 
Camera 1 and 2 the value of 0.95 for α gives the best 
result while this happens in α=0.9 for Camera 2 and 3. 
In addition, α should be high; because the appearance 
and space-time features are important hints and as 
Figure 11 shows selecting α less than 0.85 can result 
worse than the case in which neighbors’ relationships 
are not considered at all. Generally, the selection of α 
depends to the used database and environmental 
condition. Figure 12 shows the result of our matcher for 
three vehicles in the environment. 

 

 
Fig. 11 F-score measure on the data of tables 3 & 4. 

 

 

 

 
Fig. 12 Multicamera tracking results. 

 
Table 3 Recall measure for different αs. 

 
          formula 

 
 

cameras 

 
α P(app)×P(st) + (1-α)P(N) 

 

 
P(app)×p(st). [26] 

α =0.80 α =0.85 α = 0.90 α = 0.95 α = 0.99 α =1 
C1-C2 0.44 0.53 0.60 0.64 0.66 0.54 
C2-C3 0.53 0.62 0.65 0.64 0.59 0.55 

 
Table 4 Precision measure for different αs. 

 
                formula 

 
cameras 

 
α P(app)×P(st) + (1-α)P(N) 

 

 
P(app)×p(st). [26] 

α =0.80 α =0.85 α = 0.90 α = 0.95 α = 0.99 α =1 
C1-C2 0.58 0.61 0.62 0.78 0.69 0.67 
C2-C3 0.64 0.66 0.68 0.68 0.73 0.68 
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5 Conclusion 
In this paper, an efficient method for tracking 

moving vehicles by using multicameras with disjoint 
views was presented. We introduced our solutions for 
tracking vehicles in a sequence of video frames 
captured by single cameras based on coding the shape 
of objects before and after occlusion. As the method 
does not require any hypothesis on the number of 
vehicles involved in occlusion it is suitable for traffic 
scenes due to its shape-based reasoning. Multicamera 
tracking was formulated using the appearance, space-
time, and vehicle neighbors’ relationships. The 
reasoning required estimating different probabilities for 
correspondence of observations. Matching was 
performed by a bipartite graph and the assignment 
problem. Experimental results showed the efficiency of 
proposed method. 
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