
16 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 1, March 2012

A DPA Resistant FPGA Implementation of AES Cryptosystem
with Very Low Hardware Overhead

M. Masoumi

Abstract:
Differential Power Analysis (DPA) implies measuring the supply current of a cipher-circuit
in an attempt to uncover part of a cipher key. Cryptographic security gets compromised if
the current waveforms obtained correlate with those from a hypothetical power model of
the circuit. During last years, there has been a large amount of work done dealing with the
algorithmic and architectural aspects of cryptographic schemes implemented on FPGAs.
However, there are only a few articles that assess their vulnerability to such attacks which,
in practice, pose far a greater danger than algorithmic attacks. This paper first demonstrates
the vulnerability of the Advanced Encryption Standard Algorithm (AES) implemented on a
FPGA and then presents a novel approach for implementation of the AES algorithm which
provides a significantly improved strength against differential power analysis with a
minimal additional hardware overhead. The efficiency of the proposed technique was
verified by practical results obtained from real implementation on a Xilinx Spartan-II
FPGA.

Keywords: Advanced Encryption Standard Algorithm, Power Analysis Attacks, Field
Programmable Gate Arrays,Power Attack Countermeasure.

1 Introduction1
The fact that secret keys are now embedded into a
number of devices means that the hardware becomes an
attractive target for hackers. Although cryptosystem
designers frequently assume that secret parameters will
be manipulated in closed reliable computing
environments, Kocher et al. reported in 1998 that
microcomputers and microchips leak information
correlated with the data handled and introduced a new
kind of attacks which were radically different from
software and algorithmic attacks [1]. These attacks use
leaking or side-channel information, like power
consumption data, electromagnetic emanations or
computing time to recover the secret key. Because of
the simplicity of these attacks, and the growing spread
of applications which use cryptographic
implementations, the importance of researching on this
topic is still growing. Power analysis is an attack where
the attacker obtains the information or secret key by
measurements of the power consumption of the device
during the execution of one encryption. There are two
different degrees of sophistication involved in such
power analysis, simple and differential [2, 3].
A Simple Power Analysis (SPA) attack is described as
an attack where the attacker can directly use a power
consumption of a cipher system to break a

Iranian Journal of Electrical & Electronic Engineering, 2012.
Paper first received 5 Apr. 2011 and in revised form 4 Sep. 2011.
* The Author is with Islamshahr Azad University, P.O. Box: 33135-
369, Sayad Shirazi Ave., Namaz Sq., Islamshahr, Tehran, Iran.
E-mail: m_masoumi@eetd.kntu.ac.ir.

cryptosystem. However, a developer can easily protect a
cryptosystem from SPA using random dummy codes or
avoiding memory access by processing data in registers.
In contrast, a Differential Power Analysis (DPA) attack
is much harder to protect against, as it uses a statistical
and error-correcting method to extract secret
information from a power consumption signal. The
secret key is guessed by using thousands or several
hundreds of sample inputs and their corresponding
power consumption traces. Random noises in power
measurements can be filtered through the averaging
process using a large number of samples. Protecting
implementations against this efficient and sophisticated
attack is of prime importance as it is the only attack
which is not simply countered.

Another form of these attacks, the so called
Correlation Power Analysis (CPA) technique based on
the correlation between the real power consumption of
the device and a power consumption model, has been
widely studied in the literature [3, 4]. In recent years,
the security of the Advanced Encryption Standard
(AES) against DPA has received considerable attention
and there is a growing interest in efficient and secure
realization of the AES [5]. As a result of these attacks,
numerous hardware and algorithmic countermeasures
have been proposed. Unfortunately, most of these
techniques are inefficient or costly or vulnerable to
higher-order attacks [6]. They include randomized
clocks, memory encryption/decryption schemes, power
consumption randomization, and decorrelating the
external power supply from the internal power

Masoumi: A DPA Resistant FPGA Implementation of AES Cryptosystem with … 17

consumed by the chip. Moreover, the use of different
hardware logic, such as complementary logic, sense
amplifier based logic (SABL), and asynchronous logic
have been also proposed [7, 8]. Some of these
techniques require about twice as much area and will
consume twice as much power as an implementation
that is not protected against power attacks. For example,
the technique proposed in [9] adds area three times and
reduces throughput by a factor of four. Another well-
known method is masking which involves ensuring the
attacker cannot predict any full registers in the system
without making run-specific assumptions that are
independent of the inputs to the system. This is achieved
by applying a reversible random mask to the plaintext
data before encryption with a modified algorithm. This
makes exploiting data from several encryptions
impossible as it would require guessing the correct mask
for each run. Unfortunately, this method is costly or
inefficient even if it has been demonstrated that it
works. The main problem with masking methods is that
they usually require an extra data path that works in
parallel to compute the modification of the mask by the
algorithm which considerably increases hardware
overhead and decreases the throughput as it is seen in
Fig. 1.

Most importantly, some masking techniques that
were proposed were shown to be susceptible to higher
order DPA attacks. Even techniques that were shown to
be theoretically provably secure were susceptible to
DPA using predictions based on simulations and a back-
annotated netlist [10].

In this work, we concentrate on algorithmic
countermeasures to protect AES against power attack
and present a novel core implementation which is very
simple and effective with very low hardware cost. This
countermeasure is based on mathematical properties of
Rijndael algorithm, and retains perfect compatibility
with the published standard. We have studied the use of

Plaintext

Add
Mask

Modified
Algorithm

Mask

Mask
Modification

Remove
Mask

Plaintext
Fig. 1 Basic masking approach.

composite field techniques and isomorphism for Galois
Field arithmetic in the context of protection of Rijndael
against differential power attack. In order to
experimentally verify the effectiveness of our proposed
countermeasure we have implemented two versions of
AES, a protected and an unprotected, on a Xilinx
Spartan-II FPGA and compared the results of the
implementation in the terms of resistance against attack,
speed, area and throughput. While FPGAs are becoming
increasingly popular for cryptographic applications,
there are only a few articles that assess their
vulnerability to such attacks [3]. In particular, very little
work has been done on the resistance of FPGAs to
hardware or system attacks, which, in practice, pose far
a greater danger than algorithmic attacks. The results we
obtained in this work are very encouraging compared
with the results reported in the literature. The area
overhead is only 7% with no decrease in speed or clock
frequency or alteration in the algorithm. In addition, our
technique directed at both hardware and software
realizations and could be easily used in variety of
platforms such as FPGAs, smart cards, DSPs or other
security tokens. Most importantly, this work shows that
it is possible to design algorithms to be inherently
impervious to DPA. This article is organized as follows:
The AES algorithm is briefly described Section 2. The
principle of DPA attack will be described in section 3.
Section 4 explains principles of the implementation of
the AES using composite field arithmetic. In section 5
previous works is reviewed. Section 6 explains the new
proposed approach.In section 7 measurement setup used
for the implementation of the attack and the obtained
results are described. Section 8 explains
countermeasures, challenges and some open questions
about differential power analysis. Finally, we
summarize the results of our work in the conclusions.

2. The AES Algorithm

AES has been developed and published by Daemen
and Rijmen [11]. This algorithm is a byte-oriented
symmetric block cipher, composed of a sequence of
four primitive functions, Sub Bytes, ShiftRows,
MixColumns, and AddRoundKey, executed round by
round. Prior to each round AddRoundKey which
combines the input with the cipher key is executed. In a
128-bit operation mode, at the start of the encryption,
the message is divided to the blocks of length 128-bit
and is copied to a 16 byte rectangular array called State.
AddRoundKey is only a simple bit-wise XOR operation
in which the elements of the State are XORed with
RoundKey bit-by-bit. Sub Bytes is a non-linear bit-wise
substitution of all bytes in the State. In Sub Bytes, each
byte in the State is replaced by its corresponding byte in
another table called S-Box. S-Box contains
multiplicative inverse of all possible bytes over GF(28)
followed by an affine transformation.Eachbyte is an
element of Galois field GF(28) with irreducible
polynomial m(x)=x8+x4+x3+x+1. In the ShiftRows

18 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 1, March 2012

transformation, each row of the state is considered
separately and the bytes in that row are cyclically
shifted to the left based upon the key-size of the
algorithm. For the 128-bit key, the first row is
unchanged. However, the second, third and fourth rows
are shifted one, two, and three bytes respectively. The
MixColumns transformation is a bricklayer permutation
operating on each column of the State. In MixColumns,
columns of the State are considered as a four-term
polynomial over GF(28),then are multiplied with a fixed
polynomial c(x)={03}x3+{01}x2+{01}x+{02}.
Multiplications are performed modulo (x4+1). The
algorithm for the decryption has the same structure but
uses mathematical inverses of the encryption steps, i.e.
InvSubBytes, InvShiftRows, and InvMixColumns. The
round keys are the same as those in encryption but are
used in reverse order. Fig. 2 shows the standard
implementation of the AES.

3 DPA against AES

In DPA, an attacker uses a so-called hypothetical
model of the attacked device. The model is used to
predict several values for the side-channel output of a
device. This hypothetical model for the AES is one
AddRoundKey and the SBox lookup of the first round
which is fed with the plaintexts and one byte of the first
subkey. The output of SubBytes is usually attacked in
practice since that is the only function in AES in which
data and cipher key enter a direct operation. These
predictions are compared to the real, measured side-
channel output of the device. Comparisons are
performed by applying statistical methods on the data.
Among others, the most popular are the distance-of-
mean test and the correlation analysis. For the
correlation analysis, the model predicts the amount of
side-channel leakage for a certain moment of time in the
execution. These predictions are correlated to the real
side-channel output. This correlation can be measured
using the Pearson correlation coefficient. Let ti denotes
the ith measurement data (i.e. the ith trace) and T the set
of traces. Let pi denote the prediction of the model for
the ith trace and P the set of such predictions [3]. Then
we calculate:

,ܶ)ܥ ܲ) = 	
.ܶ)ܧ ܲ) − (ܲ)ܧ(ܶ)ܧ	

ඥܸܽݎ(ܶ). (ܲ)ݎܸܽ
																																			(1)

Here E(T) denotes the expectation (average) trace of
the set of traces T and Var (T) denotes the variance of a
set of traces T. In practice it is not possible to know the
true values for the covariance or standard deviation of
variables, only calculate approximations of them based
on the values discovered through experiments. If this
correlation is high, it is usually assumed that the
prediction of the model, and thus the key hypothesis, is
correct. The scenario of DPA attack based-on distance-
of-mean test is as follows. At first N plaintexts are
randomly generated. Power consumption measures are
taken for each plaintext. As before, a hypothetical

model of the AES is fed with the plaintexts and one byte
of the first subkey. Only the SBox of the first round is
targeted by the attacker since that is the only function in
AES in which data and cipher key enter a direct
operation (See Fig. 3). To this output hypothesis, a
selection function D is applied. This selection function
divides the measures in two sets. One that the selection
function returns one and the other for that returns zero.
For each set the average is computed. Then, the
difference between the two averages is calculated. This
leads to 28 differential curves. Only for the correct
subkey the selection function has worked properly and
there will be well seen spikes in an otherwise flat curve
[1]. High-order DPA uses more general DPA selection
functions to perform differential power analysis. High-
order attacks require using multiple samples in a single
power trace to compute a DPA power trace value. Using
multiple samples is analogous to second order or higher
digital signal processing with memory. An attacker can

AddRoundKey

(1st Round)
SubBytes
ShiftRows

MixColumns
AddRoundKey

(9th Round)
SubBytes
ShiftRows

MixColumns
AddRoundKey

(10th Round)
SubBytes
ShiftRows

AddRoundKey

10
Round

Encryption Decryption

AddRoundKey

(1st Round)
AddRoukdKey
InvSubBytes
InvShiftRows

(2nd Round)
AddRoundKey
InvSubBytes
InvShiftRows

InvMixColumns

(10th Round)
AddRoundKey
InvSubBytes
InvShiftRows

InvMixColumns

Fig.2 Standard implementation of the AES algorithm.

Fig. 3 Partial power trace of an AES encryption.

Masoumi: A DPA Resistant FPGA Implementation of AES Cryptosystem with … 19

mount a second order attack by computing joint
statistics on power signatures at different sections on the
encryption code. One drawback to high-order DPA is
increased memory and processor requirements because
of the need to store multiple samples for a single DPA
computation. The required trace equipment for high-
order DPA is identical to the trace equipment required
for SPA and DPA, but more sophisticated post-
processing requires additional off-line resources.
Knowledge of the encryption algorithm and specific
implementation is more critical in high-order DPA than
first-order. Attackers need to know specific points of
execution where joint statistics can be meaningfully
computed.

4 AES and Composite Field Arithmetic

The SubBytes and the InvSubBytes in the AES
algorithm are traditionally implemented by look-up
tables (LUT). Non-LUT-based approaches, which
employ combinational logic only, such as the composite
field (or tower field) inversion over GF(28) are used to
avoid the unbreakable delay of LUTs, and it can be used
to create compact AES implementations [12].
Composite field arithmetic can be employed, such that
the field elements of GF(28) are mapped to elements in
some isomorphic composite fields, in which the field
operations can be implemented by lower cost subfield
operations. The two pairs {GF(2n), Q(y)} and
{GF(2n)m), P(x)} constitute a composite field if GF(2n)
is constructed from GF(2) by Q(y) and GF((2n)m) is
constructed from GF(2n) by P(x), where Q(y) and p(x)
are polynomials of degree n and m respectively. The
fields GF((2n)m) and GF(2k), k = nm, are isomorphic to
each other.

The most costly operation in the SubBytes is the
multiplicative inversion over a field A (the AES field),
where A is extended from of GF(2) with the irreducible
polynomial m(x) = x8+x4+x3+x2+1. To reduce the cost
of this operation, the following 3-stage method is
adopted:
Stage 1: Map all elements of the field A to a composite
field B, using an isomorphism function δ.
Stage 2: Compute the multiplicative inverses over the
field B.
Stage 3: Re-map the computation results to A, using the
function δ–1. Fig. 4 shows the outline of an
S-Box implementation using the composite field
technique.

To reduce the cost of Stage 2 as much as possible, it
is known to be efficient to construct the composite field
B using repeated degree-2 extensions under a
polynomial basis using these irreducible polynomials
[ĤĤ].

ቐ
(2ଶ)ܨܩ 											→ 	 ܲ(ݔ) = ଶݔ + ݔ + 1
൫((2ଶ)ଶ)൯ܨܩ 		→ ଵܲ(ݔ) = ଶݔ	 + ݔ + ϕ
(ଶ(ଶ(2ଶ)))ܨܩ → ଶܲ(ݔ) = ଶݔ + ݔ + λ

																						(2)

Fig. 4 Computation sequences of composite-field-based S-
Box.

where Ф = {10}2, λ = {1100}2. The isomorphism
functions δ and δ-1 in Stages 1 and 3 are constructed as
follows. The δ (and δ-1) can be found as follows.

ߜ = 		

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 1
1 1 0
1 0 1

0 0 0 0 0
1 1 1 1 0
0 1 1 0 0

1 0 1
1 1 0
1
0
0

0
1
1

0
0
0

0 1 1 1 0
0 0 1 1 0
1
1
0

1
0
0

1
0
0

1
1
1

0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ଵିߜ =	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 1 0
0 1 1

0 0 0 1 0
0 0 1 0 0
0 0 0 1 0

0 1 1
0 0 1
1
0
0

0
0
1

0
1
1

1 0 1 1 0
1 1 1 1 0
1
1
1

1
0
0

1
0
1

1
0
0

0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Let q be the element in GF(28), then the isomorphic

mappings and its inverse can be written as δ*q and
δ-1*q, which is a case of matrix multiplication as shown
below, where q7 is the most significant bit and q0 is the
least significant bit. The matrix multiplication can be
translated to logical XOR operation as is shown at top
of the next page.

Thus, the multiplicative inversion in GF(28) can be
carried out in GF((24)2) by the architecture illustrated in
Fig. 5.

20 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 1, March 2012

ߜ × ݍ = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ݍ ହݍ		⊕	
ݍ ଷݍ⊕ସݍ⊕ݍ	⊕	 ଶݍ⊕ ଵݍ⊕

ݍ ହݍ	⊕	 ଶݍ⊕ଷݍ⊕
ݍ ଶݍ⊕ଷݍ⊕ହݍ	⊕	 ଵݍ⊕
ݍ ଶݍ⊕ݍ	⊕	 ଵݍ⊕

ݍ ଶݍ⊕ଷݍ⊕ସݍ	⊕	 ଵݍ⊕
ଵݍ⊕ସݍ⊕ݍ
ݍ⊕ଵݍ⊕ݍ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ଵିߜ × ݍ = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ݍ 	⊕ ݍ	 ଵݍ⊕ହݍ⊕
ଶݍ⊕ݍ

ݍ ହݍ	⊕	 ଵݍ⊕
ݍ ହݍ	⊕	 ସݍ⊕ ଵݍ⊕ଶݍ⊕
ହݍ ସݍ	⊕	 ଷݍ⊕ ଵݍ⊕ଶݍ⊕
ݍ ସݍ	⊕	 ଷݍ⊕ ଵݍ⊕ଶݍ⊕

ସݍ⊕ହݍ
ݍ ଶݍ⊕ସݍ⊕ହݍ⊕ ݍ⊕ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

The multipliers in GF(24) can be further
decomposed into multipliers in GF(22) and then to
GF(2), in which a multiplication is simply an AND
operation. Fig. 6 illustrates this decomposition, together
with the other blocks used in Fig. 5 except the inversion
in GF(24) block.

4.1 Composite Field Arithmetic Operations
Any arbitrary polynomial can be represented by

bx+c where b is upper half term and c is the lower half
term [12]. Therefore, from here, a binary number in
Galois Field q can be spilt to qHx+qL. For instance, if
q={1011}2, it can be represented as {10}2x+{11}2,
where qH is {10}2 and qL={11}2. qH and qL can be
further decomposed to {1}2x+{0}2 and {1}2x+{1}2
respectively. The decomposing is done by making use
of the irreducible polynomials introduced at (2). Using
this idea, the logical equations for the addition,
squaring, multiplication and inversion which were
shown in Fig. 5 can be derived. Detailed explanation of
the implementation of all these blocks is out of the
scope of this article. However, to clarify the subject to
the readers to better understand how these modules can
be implemented using combinational logic, the
realization of constant multipliers (×λ) is briefly
illustrated. For the purpose of practicality, the depth of
the mathematics involved has been reduced in order to
allow the reader to better figure out the internal
operations within the S-Box.

Let k = qλ, where k = {k3 k2 k1 k0}2, q = {q3q2q1q0}2

and λ = {1100}2 are elements of GF(24).

݇ = {݇ଷ݇ଶ݇ଵ݇} = ݇ுݔ +	݇ =	 {qଷqଶqଵq}(1100)
Where ߣு = {11}2 and λ =	 {00}ଶ

Fig. 5 Implementation of SubBytes transformation using
composite field arithmetic [12].

Fig. 6 Implementation of individual blocks, (a) multiplier in
GF(24), (b) multiplier in GF(22), (c) squarer in GF(24), (d)
constant multiplier (×λ); and (e) multiplier(×Ф) [12].

k = ݔுݍ) + ݔுߣ)(ݍ + (ߣ

λ୪can be canceled out since λ୪ =	 {00}ଶ
݇ = qH	ߣுx2 + ql	ߣுx

Modulo reduction can be performed by substituting

x2=x+φ using the irreducible polynomial in (2) to yield
the expression below.

݇ = qH	ߣு(x+φ) + qL	ߣுx
݇ = (qH	ߣு + ql	ߣு)ݔ + (qH	ߣு)φ ∈GF(22)
kH and kL terms can be further broken down to GF(2).
݇H = qH	ߣு+ qL	ߣு
݇H = (q3q2)(11)2 + (q1q0)(11)2
݇H = (q3x+q2)(x+1)+(q1x+q0)(x+1)
݇H=q3x2+(q3+q2)x+q2+q1x2+(q1+q0)x+q0 (3)

Substituting x2 = x+1, would then yield the
following.

݇H = q3(x+1) + (q3+q2)x + q2+q1(x+1)+(q1+q0)x+q0
݇H = (q3+q3+q2+q1+q1+q0)x+(q3+q2+q1+q0)
݇3x+݇2 = (q2+q0)x + (q3+q2+q1+q0) ∈ GF(2)

Masoumi: A DPA Resistant FPGA Implementation of AES Cryptosystem with … 21

The same procedure is taken to decompose ݇L to
GF(2).

kL= qH	ߣு߮
kL= (q3q2)(11)2(10)2
kL= (q3x+q2)(x+1)x
kL=q3x3+q2x2+q1x+q0

Again, the x2 term can be substituted since x2 = x +

1. Likewise, x3 is also substituted with x3 = 1. So, we
have:

kL=q3(1)+q2(x+1)+ q3(x+1)+q2x
kL=(q3+q2+q1)x+(q3+q2+q1)
݇1x+݇0=(q3)x+(q2) ∈ GF(2) (4)

From equations (3), (4) combined, the formula for
computing multiplication with constant λ is shown
below.

݇ଷ =	 ଶݍ ݍ⊕
݇ଶ =	 ଷݍ ଶݍ⊕ ଵݍ⊕ ݍ⊕
݇ଵ ଷݍ	=
݇ =	 ଶ(5)ݍ

From the equation (5), the architecture for
multiplication with constant λ can be depicted as is
shown in Fig. 7 (Ф = {10}2, λ = {1100}2).

The same method could be used for multiplication
with constant λ when λ = {1111}2. Fig. 8 shows this
architecture. Other architectures shown in Fig. 5 can be
implemented simply using the same technique. As it is
seen any change in {Ф, λ, δ, δ-1} could be easily
translated to Boolean logic and changing the SBox
architecture by using this method has a very low
hardware cost.

Fig. 7 Hardware implementation of the multiplication by
constant λ (λ = 12).

Fig. 8 Hardware diagram for multiplication with constant λ
(λ=15).

As another example consider multiplication with
constant (×φ) in GF(22) where φ = {10}2. Let k = qφ
where k={k1k0}2, q = {q1q0}2 and φ = {10}2 are elements
of GF(22).
k = k1x + k0 =(q1q0)(10)2= (q1x+q0)(x)
k = q1x2 + q0x

Substitute the term x2 with x+1, yield the expression
below.
k = q1(x+1)+q0x
k = (q1+q0)x+(q1)	∈ GF(2)
hence, the formula for computing multiplication with φ
can be derived and is shown below.
k1 = q1+q0
k0 = q1

Hardware implementation of the multiplication with

φ = {10}2 is shown in Fig. 9.
The hardware implementation of the multiplication

with φ = {11}2 can be obtained as follows.

k = k1x + k0 =(q1q0)(112)=(q1x + q0)(x+1)
k = q1x2 +(q0+ q1)x+q0

Substitute the term x2 with x+1, yield the expression

below.
k=q0x+(q0+q1) ∈ GF(2)

Hence, the formula for computing multiplication
with
φ = {11}2 can be derived and is shown in Fig. 10.
k1 = q0
k0 = q0+q1

For the implementation of
MixColumn/InvMixColumn, the architecture proposed
in [12] was used, in which the “XTime” block
implements the constant multiplication by {02} in
GF(28), the “X4Time” block computes the constant
multiplication of {04}16 and can be implemented by two
serially concatenated “XTime” block and Si,c denotes
the i-th byte of the c-th column of the state matrix. Fig.
11 illustrates the architecture for efficient
implementation of MixColumn/InvMixColumn.

Fig. 9. Hardware implementation of the multiplication with
φ={10}2.

Fig. 10. Hardware implementation of the multiplication with φ
= {11}2.

22 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 1, March 2012

Fig. 11 Efficient implementation of MixColumns/
InvMixColumns [12].

5. Previous Works

In [13] Rostovtsev and Shemyakina describe using
ofisomorphisms of the underlying finite field. But as the
authors admit, their method has comparatively small
efficiency. The technique proposed in [14] randomizes
power consumption of SBox by randomly choosing
irreducible generator polynomials of the field GF(28).
The approach is interesting but introduces significant
hardware cost with almost 300% increase in area and
60% decrease in speed. Another method based on
univariate polynomials of Blomeret. al. has been
illustrated in [15]. This can be seen as a perfectly
general method that can be applied to any S-box, as any
function over a finite field can be seen as a univariate
polynomial. This makes the method more efficient than
in the general case and suitable for Rijndael. However,
it suffers from considerable decrease in performance.
Tower Fields Methods by Oswald, et al. [16, 17] are
designed for hardware implementations. In these
methods, the computing of Inv in GF(22k) is reduced to
a secure computation with masked values of
multiplications and inverses in GF(2k), by representing
GF(22k) as a quadratic extension of GF(2k).
Multiplications can be computed with additive masking
and we are left with the problem of a secure
computation of Inv at the lower level. In [18] Schramm
proposes mask multipliers for GF(22) and GF(24) which
are used in the masked composite field-based AES
SBox for software applications. However, this approach
needs 1536 bytes ROM to store the masked SBox and
takes 13600 clock cycles to implement masked AES
encryption while a similar unmasked AES realization
takes 800 cycles.

6. New Proposed Approach
In the power analysis, the key detection is possible

because of the dependency between the power
consumption of devices and the intermediate values of
the cryptographic algorithms. Therefore, if we want to
prevent from these kinds of attacks, this dependency
should be broken. Considering this fact, we have studied
the structure of SBox and based on our knowledge of
math, the three parameters {Ф, λ, δ} are not constant
since there could be much more than one eligible
isomorphism (see Figs. 4 and 5). The polynomial
ଵܲ(ݔ) ଶݔ	= + ݔ + ߶ is an irreducible polynomial over

the field GF(22) if and only if 1<Ф<4, and
ଶܲ(ݔ) = ଶݔ + ݔ + is irreducible over GF(24) if and ߣ

only if 7<λ<16. So, there are 16 different combinations
for {ϕ ,	λ}. We can also search in the set of linear
transformations from GF(28) to itself or all
autoisomorphism over GF(28) and it can be proved that
there are ∏ (2଼

୧ୀ − 2୧) of such transformations. So we
can have the same number of different δ/δ-1 [19, 20] and
considerable number of sets {Ф, λ, δ, δ-1} for Rijndael.
It must be mentioned that all of the possible
combinations of {Ф, λ, δ, δ-1} will not result in an
appropriate field isomorphism. We have found 32
different suitable sets of the mentioned parameters
which can be implemented with minimum
combinational logic. For example, these three following
sets have such characteristics. The elements of matrices
δ and δ-1 and the values of Ф and λ are represented in
decimal.

Ф= 2, λ = 15
δ= {160, 126, 114, 162, 182, 84, 16, 217}T
δ-1={46, 28, 174, 2, 122, 26, 144, 75}T

Ф= 3, λ = 12
δ= {160, 222, 172, 174, 202, 238, 44, 227}T
δ-1={102, 212, 230, 162, 10, 234, 176, 233}T

Ф= 3, λ = 10
δ= {160, 126, 172, 2, 20, 132, 130, 99}T
δ-1= {190, 132, 62, 106, 98, 2, 112, 141}T

Therefore, one can make a random isomorphism by

generating different sets of {Ф, λ, δ, δ-1} and randomly
choosing them in each block encryption/decryption. As
described, two ciphers are isomorphic if they produce
the same output for the same input. Hence, from the
architectures shown in Figs. 4 and 5, it is obvious that
we can have many SBoxes with similar input/output
pairs and different internal structures. As it was shown
in section 4, it is simple to realize and select different
architectures of SBox based on different values of
{Ф, λ, δ, δ-1} since such changes can be easily realized
by Boolean gates only (please see figures 5-10). As a
result, for a specific input, there will be different power
consumption patterns while the output remains the

Masoumi: A DPA Resistant FPGA Implementation of AES Cryptosystem with … 23

same. Since different binary values are used each time,
power traces collected for DPA will be weakly
correlated to the data being manipulated and it will be
harder to extract the secret key or any other sensitive
information, even if many runs are performed for the
same inputs. The proposed technique effectively
reduces the signal to noise ratio (SNR) of the performed
operations. As we know, the SNR quantifies how much
information is leaking from a power trace. The most
important features of the proposed method are that it
does not change the mathematical properties of SBox at
all, do not decrease the working frequency and has very
low area overhead because any change in the
architecture of Figs. 5 and 6 can be easily realized by
Boolean gates only. In addition, it is very simple
compared with those presented in the literature and fully
complies with the published standard. No additional
parameters than the secret key and the data to be
processed are needed. The operation of the system is as
follows: at first all 32 (or more) possible sets of values
for {Ф, λ, δ, δ-1} are produced and stored. In our
prototype, a linear feedback shift register (LFSR) is
used as a pseudorandom number generator for proof of
the concept. Encryptor and decryptor agree on the initial
state of this LFSR as they agree on the cipher key. In
each block encryption/decryption, one set is chosen by
pseudorandom number generator and one of the 32
corresponding SBox architectures (as was shown in
Figure 5) is selected randomly. This results in very low
area overhead with no decrease in speed or clock
frequency since no hardware module has been added to
the critical path. In order to prevent any power
information leakage when the output of SBox is stored
in the output register, another random number generator
selects two other δ-1 matrices randomly and multiplies
the pre-final value to them concurrently in a parallel
path. This make power consumption pattern of the final
stage of SBox computation indistinguishable for the
attacker and prevents the adversary to mount a
successful attack on this point. This concurrent
multiplication can be easily performed in FPGA since it
is one of the inherent advantages of FPGA. The
simplicity of this approach makes it suitable for both
hardware and software applications. Since the
mentioned parameters could be easily stored inside the
device, the proposed approach could be used in smart
cards, digital signal processors or other security tokens.

7 Attack on a Real System

To investigate the effect on efficiency of
implementing a device using the new style, both regular
AES and the new design were realized in a loop
architecture in which only one block of data is being
processed at a time, using Verilog HDL and were
synthesized on a Xilinx Spartan-II FPGA. Both used
128-bit keys. The encryptor core structure in regular
AES occupied 983 CLB slices (41%), on targeting
Xilinx Spartan-II FPGA device while this number for

the modified implementation with 32 randomly selected
SBoxs was 1050. This means that the total area cost for
the implementation is almost 7%, much lower than the
results reported in the literature so far. The clock speed
in both cases was almost 42.2 MHz. Our measurement
setup, as it is shown in Figure 12, consists of the FPGA
board, an Agilent MSO7034A sampling oscilloscope
with a 2 GS/sec and BW=350 MHz. The board uses two
separate power supplies, a 3.3 V supply for I/O and a
2.5V supply for the core cells. Only the core power
supply was measured. A small resistor (10 ohm) was
inserted between the FPGA board and the power supply.
In order to reduce switching noise and to improve the
accuracy, the working frequency of FPGA board was
lowered to 1 KHz and all measurements were averaged
over ten times.

In order to improve the SNR and accuracy of the
attack, instead of considering a mono-it, a set of four bit
was considered, i.e. our selection function returns one
when hamming weight of the output of SBox is greater
than four, and otherwise it returns zero. It has been
shown that the efficiency of the attack is increased in
such a case since the ghost peaks and secondary peaks
are lowered [21].
The experimental results for the differential power
traces for the correct and a wrong subkey guesses are
shown in Fig. 13 and Fig. 14 respectively. As it is seen,
the plots confirm the assumption about the
measurability of Hamming-Weights leakage. We need
approximately 1,000 measurements to identify the
correct key.

Fig. 12. Experimental setup used for mounting the attack.

Fig. 13 Differential power traces for the correct subkey guess
in the unprotected implementation.

0 20 40 60 80 100 120 140 160 180 200
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Samples

V
ol

ta
ge

 (V
)

24 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 1, March 2012

Fig. 14 Differential power traces for a wrong subkey guess in
the unprotected implementation.

Fig. 15 Recovering the correct subkey using a correlation
attack with real measurements.

Fig. 16 Differential power traces for a correct subkey guess in
the modified implementation.

The results of calculation of correlations for the first
subkey are shown in Fig. 15, in which the correct value,
0x3C, appears as a clear peak. Our experiments showed
that recovering the full 128-bit key with this method
takes almost two hours with an Intel 2.5 GHz quad
processor computer.

The setup was repeated using an implementation of
the new algorithm. Fig. 16 and Fig. 17 show the
differential power traces for the correct and wrong key
guesses in the protected version respectively. As it is
seen the correct key cannot be distinguished from the
wrong key as there is more much noise in the system.
Fig. 18 and Fig. 19 show two different patterns of
powertraces when inputting the same plaintext. Fig. 20
shows the correlations for each possible key guess in the

modified implementation after 1000 traces. This time
the correct value is completely obscured by other values
and there are no clear peaks, just a band of random
values. The experiment was repeated with a new key
schedule, this time 6000 power traces were recorded.
Again, the correct value was not distinguishable from
the incorrect ones.

Fig. 17. Differential power traces for a wrong subkey guess in
the modified implementation.

Fig. 18. Differential power traces for a known plaintext in the
modified implementation with a specific set of parameters {Ф,
λ, δ, δ-1}.

Fig. 19. The differential power traces for the same plaintext in
the modified implementation with another set of parameters
{Ф, λ, δ, δ-1}.

0 20 40 60 80 100 120 140 160 180 200
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Samples

V
ol

ta
ge

 (V
)

0 50 100 150 200 250
0.005

0.01

0.015

0.02

0.025

0.03

Subkey

C
or

re
la

tio
n

Correct Subkey

0 20 40 60 80 100 120 140 160 180 200
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Samples

V
ol

ta
ge

(V
)

0 50 100 150 200
-0.02

-0.01

0

0.01

0.02

Samples

V
ol

ta
ge

 (V
)

Masoumi: A DPA Resistant FPGA Implementation of AES Cryptosystem with … 25

Fig. 20 Result of correlation analysis for recovering the
correct subkey in the modified implementation.

8. Countermeasures and Challenges

In recent years, there has been a lot of work done to
prevent side-channel attacks. The methods can generally
be divided into software and hardware countermeasures,
with the majority of proposals dealing with software
countermeasures. “Software” countermeasures refer
primarily to algorithmic changes, such as masking of
secret keys with random values, which are also
applicable to implementations in custom hardware or
FPGA. Hardware countermeasures often deal either
with some form of power trace smoothing or with
transistor-level changes of the logic. Neither seems to
be easily applicable to FPGAs without support from the
manufacturers. However, some proposals such as
duplicated architectures might work on today’s FPGAs.
Many of the mitigations that are intuitively put forward,
such as the randomization of the execution sequence or
the addition of a random power consuming module or a
current sink, hardly improve the resistance against the
power attacks [22]. In the present state-of-the-art, the
countermeasures try to make the power consumption of
the cryptographic device independent of the signal
values at the internal circuit nodes by either
randomizing or flattening the power consumption. None
of the techniques, however, provides perfect security
instead they increase the required number of
measurements. As mentioned, randomizing the power
consumption is done with masking techniques that
randomize the signal values at the internal circuit nodes
while still producing the correct cipher text. This can be
done at the algorithmic level where a random mask is
added to the data prior to the encryption and removed
afterwards without changing the encryption result (e.g.
[23]) or at the circuit level where a random mask-bit
equalizes the output transition probabilities of each
logic gate [24], [25]. Flattening the power consumption
is done at the circuit level such that each individual gate
has a quasi data-independent power dissipation. This is
done with dynamic differential logic, sometimes also
referred to as dual rail with precharge logic to assure
that every logic gate has a single charging event per
cycle [26]. In self-timed asynchronous logic [27], the

terminology refers to dual rail encoded data interleaved
with spacers.

The increased power attack resistance does not come
for free. The algorithmic level masking has a factor 1.5
overhead when compared with a regular (unprotected)
design [23]. The masked logic styles have a factor 2 and
5 area overhead [24], [25]. The dual rail logic styles
have a factor 3 area overhead [28]. Yet, the figures for
the algorithmic and logic masking do not include the
random number generator. It is thus important that the
full implementation cost of a countermeasure is clearly
communicated and taken into account for evaluation.
Several techniques have been proposed to reduce the
area overhead. For instance, custom logic cells can be
made more compact than compound standard logic cells
and security partitioning reduces the part of the design
that has to be protected [28].The fundamental question
here is that can these techniques be optimized further or
can a breakthrough mitigation technology be developed
with a lower overhead?

Yet, one has to be careful to declare a (new)
mitigation as secure. A visual inspection, or even the
standard deviation of the power consumption, does not
provide any indication [29]. Thus far, the best figure of
merit is probably the required number of measurements
for a successful attack on a realistic circuit. The success
of an attack, however, depends both on the information
in the power consumption and on the strength of the
attacker, which encompasses the measurement setup but
also the leakage estimation and the statistical technique
used. Indeed, if the power estimation is more accurate,
the attack will be more successful. The statistical
analysis technique to compare the measurements with
the estimations is also important: the difference of
means test requires more measurements then the
correlation test, which requires more measurements then
the Bayesian classification. Some work has been done
to distinguish the quality of an implementation from the
strength of a side-channel adversary [24], but it is not
clear how in a practical way a design can be evaluated
without an attack and with abstraction of the statistical
tool or distinguisher. Another important question here is
that can an expression be found that based on design
parameters such as the activity factor or a power
consumption profile indicates the strength of a design?
These are some examples of open questions and open
research areas about the use of FPGA as a module of
security. Of course, replying these questions is an
important, challenging and motivational task.

9. Conclusions

As a conclusion, it can be said that even an
encryption standard that has proved its robustness
theoretically, may be vulnerable when implemented on
hardware devices such as FPGAs. This work confirmed
that power analysis has to be considered as a serious
threat for FPGA security. We were able to recover the
128-bit secret key in almost two hours. Although certain

0 20 40 60 80 100 120 140 160 180 200 220 240 255
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Subkey

C
or

re
la

tio
n

Correct Subkey

26 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 1, March 2012

features of FPGAs make the practical implementation of
power attacks significantly harder than in the smart card
context, we have conduced relevant experimental tests
that led us to find the encryption key. In addition, a
novel AES implementation with a simple and integrated
countermeasure against DPA was presented. The
countermeasure is based on mathematical properties of
Rijndael algorithm and retains perfect compatibility
with the published Standard. The new design permits
the construction of actual cores with very efficient area
and speed characteristics, while still keeping a high
protection level. Many solutions would allow improving
our measurements and a lot of questions concerning the
physical security of FPGAs remain open. The efficiency
of the attack may be improved by combining this
method with other side-channel technique. As many
state-of-the-art cryptosystems use FPGA and processors
simultaneously, successful implementation of DPA on
such systems may be an interesting research subject for
both academia and industry. Protecting against the
attacks exploiting the information, however, can be a
challenge, is costly and must be done with care.

References
[1] Kocher P., Jaffe J. and Jun B., “Differential

power analysis”, Advances in Cryptology- Crypto
1999, LNCS, Vol. 1666, pp. 388-397, Springer-
Verlag, 1999.

[2] Coron, J., Prouff E. and Rivain M., “Side channel
cryptanalysis of a higher order masking scheme”,
CHES 2007, LNCS, Vol. 4727, pp. 28–44,
Springer-Verlag.

[3] Masoomi M., Masoumi M. and Ahmadian M., “A
practical differential power analysis attack against
an FPGA implementation of AES cryptosystem”,
IEEE I-Society, London, UK, 2010.

[4] Standaert F. X., Peeters E., Mace F., and
Quisquater J. J., “Updates in security of FPGA
against differential power attacks”, ARC2006,
LNCS 3958, pp. 335-346, Springer-Verlog, 2006.

[5] Fereidunian A., Lesani H., Lucas C., Lehtonen M.
and Nordman M. M., “A Systems Approach to
Information Technology (IT) Infrastructure
Design for Utility Management Automation
Systems”, Iranian Journal of Electrical and
Electronic Engineering, Vol. 2, No.3, pp. 91-104,
2006.

[6] Courtois N. T. and Goubin L., “An Algebraic
Masking Method to Protect AES against Power
Attacks”, ICISC 2005, LNCS 3935, pp. 199–209,
Springer-Verlag, 2005.

[7] Mirhosseini S. and Ayatollahi A., “A low-
voltage, low-power, two-stage amplifier for
switched-capacitor applications in 90 nm CMOS
process”, Iranian Journal of Electrical and
Electronic Engineering, Vol. 6, No. 4, pp. 199-
204, 2010.

[8] Karimi, G. R. and Mirzakuchaki S., “Behavioral
modeling and simulation of semiconductor
devices and circuits using VHDL-AMS”, Iranian
Journal of Electrical and Electronic Engineering,
Vol. 4, No. 4, pp.165-175, 2008.

[9] Moore S., Anderson R., Mullins R., G. Taylor,
and Fournier J. J. A., “Balanced self-checking
asynchronous logic for smart card applications”,
J. of Microp. and Microsystems, Vol. 27, No. 9,
pp. 421-430, 2003.

[10] Ors S. B. and Oswald E., “Power analysis attacks
against FPGA, first experimental results”, CHES
2003, LNCS 2779, pp. 35-50, Springer-Verlag,
2003.

[11] Daemen J. and Rijmen V., AES Proposal
Rijndael, National Institute of Standards and
Technology, July 2001.

[12] Zhang X. and Parhi K. K., “High-Speed VLSI
architectures for the AES algorithm”, IEEE
Trans. Very Large Scale Integration (VLSI)
Systems, Vol. 12, No. 9, pp. 957-967, 2004.

[13] Rostovtsev A. G. and Shemyakina O. V., “AES
side channel attack protection using random
isomorphisms”, Available on:
http://eprint.iacr.org/2005/087.pdf.

[14] Ghellar F. and Lubaszewski M. S., “A novel AES
cryptographic core highly resistant to differential
power attack”, BCCI’08, pp. 29-35, Gramado,
Brazil, 2008.

[15] Blömer J., Guajardo J. and Krummel V.,
“Provably secure masking of AES”, in Selected
Areas in Cryptography Workshop, pp. 69-83,
2004.

[16] Oswald, E., Mangard, S. and Pramstaller, N.,
“Secure and efficient masking of AES -amission
impossible?”, eprint.iacr.org/2004/134.

[17] Oswald, E., Mangard, S., Pramstaller, N. and
Rijmen, V., “A side-channel analysis resistant
description of the AES S-Box”, FSE 2005, pp.
413-423, 2005.

[18] Schramm K., Advanced methods in side‐channel
cryptanalysis, Ph. D. Thesis, University of
Bochum, Germany, 2006.

[19] Xiao L. and Heys. H. M., “Hardware design and
analysis of block cipher components”, in 5th Int.
Conf. on Information Security and Cryptology
(ICISC’02), Seoul, Korea, November, 2002.

[20] Lidl R. and Niederreiter H., Introduction to finite
field and applications, Cambridge University
Press, 1986.

[21] Ha Lee, Canovas C. and Cledier J., “An overview
onside-channel analysis attacks” ASIACCS’08,
pp. 33-43, March, 18-20, 2008.

[22] Clavier C., Coron J. and Dabbous N.,
“Differential power analysis in the presence of
hardware countermeasures” CHES 2000, pp. 252-
263, 2000.

Masoumi: A DPA Resistant FPGA Implementation of AES Cryptosystem with … 27

[23] Pramstaller N., Gürkaynak F., Häne S., Kaeslin
H., Felber N. and FichtnerW., “Towards an AES
crypto-chip resistant to differential power
analysis”, ESSCIRC, pp. 307-310, 2004.

[24] Suzuki D., Saeki M. and Ichikawa T., “Random
switching logic: acountermeasure against DPA
based on transition probability”, IACR ePrint, rep.
2004/346, 2004.

[25] Popp T. and Mangard S., “Masked dual-rail pre-
charge logic: DPA resistance without the routing
constraints” CHES 2005, pp. 172-186, 2005.

[26] Tiri K., Akmal M. and Verbauwhede I., “A
dynamic, differential CMOS logic with signal
independent power consumption to withstand
differential power analysis on smart cards”,
ESSCIRC, pp. 403-406, 2002.

[27] Moore S., Anderson R., Mullins R. and Taylor G.,
“Balanced self checking asynchronous logic for
smart card applications”, J. Microprocess.
Microsyst., Vol. 27, pp. 421-430, 2003.

[28] Tiri K., Hwang D., Hodjat A., Lai B.-C., Yang S.,
Schaumont P. and Verbauwhede I., “AES-Based

cryptographic, biometric security coprocessor IC
in 0.18-μm CMOS resistant to side-channel
power analysis attacks”, VLSI Sympusium, pp.
216-219, 2005.

[29] Tiri K. and Verbauwhede I., “Simulation models
for side-channel information leaks” DAC, pp.
228-233, 2005.

Massoud Masoumi received his BSc
from Guilan University, Rasht, Iran in
1996 and MSc and PhD from K.N.
Toosi University of Technology,
Tehran, Iran, in 1999 and 2006
respectively, all in electronics
engineering and all with honor degree.
In 2009, he finished a post doctoral
research in the context of power

analysis attack to symmetric key cipher systems in K. N.
Toosi University of Technology. His research interests include
side-channel attacks and related countermeasures and efficient
VLSI architecture design for digital signal processing systems,
error-correcting codes, and cryptosystems.

