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Abstract: 
Differential Power Analysis (DPA) implies measuring the supply current of a cipher-circuit 
in an attempt to uncover part of a cipher key. Cryptographic security gets compromised if 
the current waveforms obtained correlate with those from a hypothetical power model of 
the circuit. During last years, there has been a large amount of work done dealing with the 
algorithmic and architectural aspects of cryptographic schemes implemented on FPGAs. 
However, there are only a few articles that assess their vulnerability to such attacks which, 
in practice, pose far a greater danger than algorithmic attacks. This paper first demonstrates 
the vulnerability of the Advanced Encryption Standard Algorithm (AES) implemented on a 
FPGA and then presents a novel approach for implementation of the AES algorithm which 
provides a significantly improved strength against differential power analysis with a 
minimal additional hardware overhead. The efficiency of the proposed technique was 
verified by practical results obtained from real implementation on a Xilinx Spartan-II 
FPGA. 
 
Keywords: Advanced Encryption Standard Algorithm, Power Analysis Attacks, Field 
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1 Introduction1 
The fact that secret keys are now embedded into a 
number of devices means that the hardware becomes an 
attractive target for hackers. Although cryptosystem 
designers frequently assume that secret parameters will 
be manipulated in closed reliable computing 
environments, Kocher et al. reported in 1998 that 
microcomputers and microchips leak information 
correlated with the data handled and introduced a new 
kind of attacks which were radically different from 
software and algorithmic attacks [1]. These attacks use 
leaking or side-channel information, like power 
consumption data, electromagnetic emanations or 
computing time to recover the secret key. Because of 
the simplicity of these attacks, and the growing spread 
of applications which use cryptographic 
implementations, the importance of researching on this 
topic is still growing. Power analysis is an attack where 
the attacker obtains the information or secret key by 
measurements of the power consumption of the device 
during the execution of one encryption. There are two 
different degrees of sophistication involved in such 
power analysis, simple and differential [2, 3]. 
A Simple Power Analysis (SPA) attack is described as 
an attack where the attacker can directly use a power 
consumption of a cipher system to break a 
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cryptosystem. However, a developer can easily protect a 
cryptosystem from SPA using random dummy codes or 
avoiding memory access by processing data in registers. 
In contrast, a Differential Power Analysis (DPA) attack 
is much harder to protect against, as it uses a statistical 
and error-correcting method to extract secret 
information from a power consumption signal. The 
secret key is guessed by using thousands or several 
hundreds of sample inputs and their corresponding 
power consumption traces. Random noises in power 
measurements can be filtered through the averaging 
process using a large number of samples. Protecting 
implementations against this efficient and sophisticated 
attack is of prime importance as it is the only attack 
which is not simply countered. 

Another form of these attacks, the so called 
Correlation Power Analysis (CPA) technique based on 
the correlation between the real power consumption of 
the device and a power consumption model, has been 
widely studied in the literature [3, 4]. In recent years, 
the security of the Advanced Encryption Standard 
(AES) against DPA has received considerable attention 
and there is a growing interest in efficient and secure 
realization of the AES [5]. As a result of these attacks, 
numerous hardware and algorithmic countermeasures 
have been proposed. Unfortunately, most of these 
techniques are inefficient or costly or vulnerable to 
higher-order attacks [6]. They include randomized 
clocks, memory encryption/decryption schemes, power 
consumption randomization, and decorrelating the 
external power supply from the internal power 
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consumed by the chip. Moreover, the use of different 
hardware logic, such as complementary logic, sense 
amplifier based logic (SABL), and asynchronous logic 
have been also proposed [7, 8]. Some of these 
techniques require about twice as much area and will 
consume twice as much power as an implementation 
that is not protected against power attacks. For example, 
the technique proposed in [9] adds area three times and 
reduces throughput by a factor of four. Another well-
known method is masking which involves ensuring the 
attacker cannot predict any full registers in the system 
without making run-specific assumptions that are 
independent of the inputs to the system. This is achieved 
by applying a reversible random mask to the plaintext 
data before encryption with a modified algorithm. This 
makes exploiting data from several encryptions 
impossible as it would require guessing the correct mask 
for each run. Unfortunately, this method is costly or 
inefficient even if it has been demonstrated that it 
works. The main problem with masking methods is that 
they usually require an extra data path that works in 
parallel to compute the modification of the mask by the 
algorithm which considerably increases hardware 
overhead and decreases the throughput as it is seen in 
Fig. 1. 

Most importantly, some masking techniques that 
were proposed were shown to be susceptible to higher 
order DPA attacks. Even techniques that were shown to 
be theoretically provably secure were susceptible to 
DPA using predictions based on simulations and a back-
annotated netlist [10]. 

In this work, we concentrate on algorithmic 
countermeasures to protect AES against power attack 
and present a novel core implementation which is very 
simple and effective with very low hardware cost. This 
countermeasure is based on mathematical properties of 
Rijndael algorithm, and retains perfect compatibility 
with the published standard. We have studied the use of 
 

Plaintext

Add 
Mask

Modified 
Algorithm

Mask

Mask 
Modification

Remove 
Mask

Plaintext  
Fig. 1 Basic masking approach. 

composite field techniques and isomorphism for Galois 
Field arithmetic in the context of protection of Rijndael 
against differential power attack. In order to 
experimentally verify the effectiveness of our proposed 
countermeasure we have implemented two versions of 
AES, a protected and an unprotected, on a Xilinx 
Spartan-II FPGA and compared the results of the 
implementation in the terms of resistance against attack, 
speed, area and throughput. While FPGAs are becoming 
increasingly popular for cryptographic applications, 
there are only a few articles that assess their 
vulnerability to such attacks [3]. In particular, very little 
work has been done on the resistance of FPGAs to 
hardware or system attacks, which, in practice, pose far 
a greater danger than algorithmic attacks. The results we 
obtained in this work are very encouraging compared 
with the results reported in the literature. The area 
overhead is only 7% with no decrease in speed or clock 
frequency or alteration in the algorithm. In addition, our 
technique directed at both hardware and software 
realizations and could be easily used in variety of 
platforms such as FPGAs, smart cards, DSPs or other 
security tokens. Most importantly, this work shows that 
it is possible to design algorithms to be inherently 
impervious to DPA. This article is organized as follows: 
The AES algorithm is briefly described Section 2. The 
principle of DPA attack will be described in section 3. 
Section 4 explains principles of the implementation of 
the AES using composite field arithmetic. In section 5 
previous works is reviewed. Section 6 explains the new 
proposed approach.In section 7 measurement setup used 
for the implementation of the attack and the obtained 
results are described. Section 8 explains 
countermeasures, challenges and some open questions 
about differential power analysis. Finally, we 
summarize the results of our work in the conclusions. 
 
2. The AES Algorithm 

AES has been developed and published by Daemen 
and Rijmen [11]. This algorithm is a byte-oriented 
symmetric block cipher, composed of a sequence of 
four primitive functions, Sub Bytes, ShiftRows, 
MixColumns, and AddRoundKey, executed round by 
round. Prior to each round AddRoundKey which 
combines the input with the cipher key is executed. In a 
128-bit operation mode, at the start of the encryption, 
the message is divided to the blocks of length 128-bit 
and is copied to a 16 byte rectangular array called State. 
AddRoundKey is only a simple bit-wise XOR operation 
in which the elements of the State are XORed with 
RoundKey bit-by-bit. Sub Bytes is a non-linear bit-wise 
substitution of all bytes in the State. In Sub Bytes, each 
byte in the State is replaced by its corresponding byte in 
another table called S-Box. S-Box contains 
multiplicative inverse of all possible bytes over GF(28) 
followed by an affine transformation.Eachbyte is an 
element of Galois field GF(28) with irreducible 
polynomial m(x)=x8+x4+x3+x+1. In the ShiftRows 
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transformation, each row of the state is considered 
separately and the bytes in that row are cyclically 
shifted to the left based upon the key-size of the 
algorithm. For the 128-bit key, the first row is 
unchanged. However, the second, third and fourth rows 
are shifted one, two, and three bytes respectively. The 
MixColumns transformation is a bricklayer permutation 
operating on each column of the State. In MixColumns, 
columns of the State are considered as a four-term 
polynomial over GF(28),then are multiplied with a fixed 
polynomial c(x)={03}x3+{01}x2+{01}x+{02}. 
Multiplications are performed modulo (x4+1). The 
algorithm for the decryption has the same structure but 
uses mathematical inverses of the encryption steps, i.e. 
InvSubBytes, InvShiftRows, and InvMixColumns. The 
round keys are the same as those in encryption but are 
used in reverse order. Fig. 2 shows the standard 
implementation of the AES. 
 
3 DPA against AES 

In DPA, an attacker uses a so-called hypothetical 
model of the attacked device. The model is used to 
predict several values for the side-channel output of a 
device. This hypothetical model for the AES is one 
AddRoundKey and the SBox lookup of the first round 
which is fed with the plaintexts and one byte of the first 
subkey. The output of SubBytes is usually attacked in 
practice since that is the only function in AES in which 
data and cipher key enter a direct operation. These 
predictions are compared to the real, measured side-
channel output of the device. Comparisons are 
performed by applying statistical methods on the data. 
Among others, the most popular are the distance-of-
mean test and the correlation analysis. For the 
correlation analysis, the model predicts the amount of 
side-channel leakage for a certain moment of time in the 
execution. These predictions are correlated to the real 
side-channel output. This correlation can be measured 
using the Pearson correlation coefficient. Let ti denotes 
the ith measurement data (i.e. the ith trace) and T the set 
of traces. Let pi denote the prediction of the model for 
the ith trace and P the set of such predictions [3]. Then 
we calculate: 

,ܶ)ܥ ܲ) = 	
.ܶ)ܧ ܲ) − (ܲ)ܧ(ܶ)ܧ	

ඥܸܽݎ(ܶ). (ܲ)ݎܸܽ
																																			(1) 

Here E(T) denotes the expectation (average) trace of 
the set of traces T and Var (T) denotes the variance of a 
set of traces T. In practice it is not possible to know the 
true values for the covariance or standard deviation of 
variables, only calculate approximations of them based 
on the values discovered through experiments. If this 
correlation is high, it is usually assumed that the 
prediction of the model, and thus the key hypothesis, is 
correct. The scenario of DPA attack based-on distance-
of-mean test is as follows. At first N plaintexts are 
randomly generated. Power consumption measures are 
taken for each plaintext. As before, a hypothetical 

model of the AES is fed with the plaintexts and one byte 
of the first subkey. Only the SBox of the first round is 
targeted by the attacker since that is the only function in 
AES in which data and cipher key enter a direct 
operation (See Fig. 3). To this output hypothesis, a 
selection function D is applied. This selection function 
divides the measures in two sets. One that the selection 
function returns one and the other for that returns zero. 
For each set the average is computed. Then, the 
difference between the two averages is calculated. This 
leads to 28 differential curves. Only for the correct 
subkey the selection function has worked properly and 
there will be well seen spikes in an otherwise flat curve 
[1]. High-order DPA uses more general DPA selection 
functions to perform differential power analysis. High-
order attacks require using multiple samples in a single 
power trace to compute a DPA power trace value. Using 
multiple samples is analogous to second order or higher 
digital signal processing with memory. An attacker can 
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Fig.2 Standard implementation of the AES algorithm. 
 

 
Fig. 3 Partial power trace of an AES encryption. 
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mount a second order attack by computing joint 
statistics on power signatures at different sections on the 
encryption code. One drawback to high-order DPA is 
increased memory and processor requirements because 
of the need to store multiple samples for a single DPA 
computation. The required trace equipment for high-
order DPA is identical to the trace equipment required 
for SPA and DPA, but more sophisticated post-
processing requires additional off-line resources. 
Knowledge of the encryption algorithm and specific 
implementation is more critical in high-order DPA than 
first-order. Attackers need to know specific points of 
execution where joint statistics can be meaningfully 
computed. 
 
4 AES and Composite Field Arithmetic 

The SubBytes and the InvSubBytes in the AES 
algorithm are traditionally implemented by look-up 
tables (LUT). Non-LUT-based approaches, which 
employ combinational logic only, such as the composite 
field (or tower field) inversion over GF(28) are used to 
avoid the unbreakable delay of LUTs, and it can be used 
to create compact AES implementations [12]. 
Composite field arithmetic can be employed, such that 
the field elements of GF(28) are mapped to elements in 
some isomorphic composite fields, in which the field 
operations can be implemented by lower cost subfield 
operations. The two pairs {GF(2n), Q(y)} and 
{GF(2n)m), P(x)} constitute a composite field if GF(2n) 
is constructed from GF(2) by Q(y) and GF((2n)m) is 
constructed from GF(2n) by P(x), where Q(y) and p(x) 
are polynomials of degree n and m respectively. The 
fields GF((2n)m) and GF(2k), k = nm, are isomorphic to 
each other. 

The most costly operation in the SubBytes is the 
multiplicative inversion over a field A (the AES field), 
where A is extended from of GF(2) with the irreducible 
polynomial m(x) = x8+x4+x3+x2+1. To reduce the cost 
of this operation, the following 3-stage method is 
adopted: 
Stage 1: Map all elements of the field A to a composite 
field B, using an isomorphism function δ. 
Stage 2: Compute the multiplicative inverses over the 
field B. 
Stage 3: Re-map the computation results to A, using the 
function δ–1. Fig. 4 shows the outline of an  
S-Box implementation using the composite field 
technique. 

To reduce the cost of Stage 2 as much as possible, it 
is known to be efficient to construct the composite field 
B using repeated degree-2 extensions under a 
polynomial basis using these irreducible polynomials 
[ĤĤ]. 

ቐ
(2ଶ)ܨܩ 											→ 	 ܲ(ݔ) = ଶݔ + ݔ + 1
൫((2ଶ)ଶ)൯ܨܩ 		→ ଵܲ(ݔ) = ଶݔ	 + ݔ + ϕ
(ଶ(ଶ(2ଶ)))ܨܩ → ଶܲ(ݔ) = ଶݔ + ݔ + λ

																						(2) 

 
Fig. 4 Computation sequences of composite-field-based S-
Box. 
 
where Ф = {10}2, λ = {1100}2. The isomorphism 
functions δ and δ-1 in Stages 1 and 3 are constructed as 
follows. The δ (and δ-1) can be found as follows. 
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Let q be the element in GF(28), then the isomorphic 

mappings and its inverse can be written as δ*q and  
δ-1*q, which is a case of matrix multiplication as shown 
below, where q7 is the most significant bit and q0 is the 
least significant bit. The matrix multiplication can be 
translated to logical XOR operation as is shown at top 
of the next page. 

Thus, the multiplicative inversion in GF(28) can be 
carried out in GF((24)2) by the architecture illustrated in 
Fig. 5. 
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ߜ × ݍ = 	
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The multipliers in GF(24) can be further 
decomposed into multipliers in GF(22) and then to 
GF(2), in which a multiplication is simply an AND 
operation. Fig. 6 illustrates this decomposition, together 
with the other blocks used in Fig. 5 except the inversion 
in GF(24) block. 
 

4.1   Composite Field Arithmetic Operations 
Any arbitrary polynomial can be represented by 

bx+c where b is upper half term and c is the lower half 
term [12]. Therefore, from here, a binary number in 
Galois Field q can be spilt to qHx+qL. For instance, if 
q={1011}2, it can be represented as {10}2x+{11}2, 
where qH is {10}2 and qL={11}2. qH and qL can be 
further decomposed to {1}2x+{0}2 and {1}2x+{1}2 
respectively. The decomposing is done by making use 
of the irreducible polynomials introduced at (2). Using 
this idea, the logical equations for the addition, 
squaring, multiplication and inversion which were 
shown in Fig. 5 can be derived. Detailed explanation of 
the implementation of all these blocks is out of the 
scope of this article. However, to clarify the subject to 
the readers to better understand how these modules can 
be implemented using combinational logic, the 
realization of constant multipliers (×λ) is briefly 
illustrated. For the purpose of practicality, the depth of 
the mathematics involved has been reduced in order to 
allow the reader to better figure out the internal 
operations within the S-Box. 

 
Let k = qλ, where k = {k3 k2 k1 k0}2, q = {q3q2q1q0}2 

and λ = {1100}2 are elements of GF(24). 
 

݇ = {݇ଷ݇ଶ݇ଵ݇} = ݇ுݔ +	݇ =	 {qଷqଶqଵq}(1100) 
Where ߣு = {11}2 and λ =	 {00}ଶ 

 

 
Fig. 5 Implementation of SubBytes transformation using 
composite field arithmetic [12]. 

 

 
Fig. 6 Implementation of individual blocks, (a) multiplier in 
GF(24), (b) multiplier in GF(22), (c) squarer in GF(24), (d) 
constant multiplier (×λ); and (e) multiplier(×Ф) [12]. 

 
k = ݔுݍ) + ݔுߣ)(ݍ +  (ߣ

λ୪can be canceled out since λ୪ =	 {00}ଶ 
݇ = qH	ߣுx2 + ql	ߣுx 
 
Modulo reduction can be performed by substituting 

x2=x+φ using the irreducible polynomial in (2) to yield 
the expression below. 

 
݇ = qH	ߣு(x+φ) + qL	ߣுx 
݇ = (qH	ߣு + ql	ߣு)ݔ + (qH	ߣு)φ ∈GF(22) 
kH and kL terms can be further broken down to GF(2). 
݇H = qH	ߣு+ qL	ߣு 
݇H = (q3q2)(11)2 + (q1q0)(11)2 
݇H = (q3x+q2)(x+1)+(q1x+q0)(x+1) 
݇H=q3x2+(q3+q2)x+q2+q1x2+(q1+q0)x+q0                  (3) 
 

Substituting x2 = x+1, would then yield the 
following. 
 

݇H = q3(x+1) + (q3+q2)x + q2+q1(x+1)+(q1+q0)x+q0 
݇H = (q3+q3+q2+q1+q1+q0)x+(q3+q2+q1+q0) 
݇3x+݇2 = (q2+q0)x + (q3+q2+q1+q0) ∈ GF(2) 
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The same procedure is taken to decompose ݇L to 
GF(2). 
 
kL= qH	ߣு߮ 
kL= (q3q2)(11)2(10)2 
kL= (q3x+q2)(x+1)x 
kL=q3x3+q2x2+q1x+q0 

 
Again, the x2 term can be substituted since x2 = x + 

1. Likewise, x3 is also substituted with x3 = 1. So, we 
have: 
 
kL=q3(1)+q2(x+1)+ q3(x+1)+q2x 
kL=(q3+q2+q1)x+(q3+q2+q1) 
݇1x+݇0=(q3)x+(q2) ∈ GF(2)                                  (4) 
 

From equations (3), (4) combined, the formula for 
computing multiplication with constant λ is shown 
below.  
 
݇ଷ =	 ଶݍ  ݍ⊕
݇ଶ =	 ଷݍ ଶݍ⊕ ଵݍ⊕  ݍ⊕
݇ଵ  ଷݍ	=
݇ =	  ଶ(5)ݍ
 

From the equation (5), the architecture for 
multiplication with constant λ can be depicted as is 
shown in Fig. 7 (Ф = {10}2, λ = {1100}2). 

The same method could be used for multiplication 
with constant λ when λ = {1111}2. Fig. 8 shows this 
architecture. Other architectures shown in Fig. 5 can be 
implemented simply using the same technique. As it is 
seen any change in {Ф, λ, δ, δ-1} could be easily 
translated to Boolean logic and changing the SBox 
architecture by using this method has a very low 
hardware cost. 
 
 

 
Fig. 7 Hardware implementation of the multiplication by 
constant λ (λ = 12). 
 

 
Fig. 8 Hardware diagram for multiplication with constant λ 
(λ=15). 

As another example consider multiplication with 
constant (×φ) in GF(22) where φ = {10}2. Let k = qφ 
where k={k1k0}2, q = {q1q0}2 and φ = {10}2 are elements 
of GF(22). 
k = k1x + k0 =(q1q0)(10)2= (q1x+q0)(x) 
k = q1x2 + q0x 

Substitute the term x2 with x+1, yield the expression 
below. 
k = q1(x+1)+q0x 
k = (q1+q0)x+(q1)	∈ GF(2) 
hence, the formula for computing multiplication with φ 
can be derived and is shown below. 
k1 = q1+q0 
k0 = q1 

Hardware implementation of the multiplication with 

φ = {10}2 is shown in Fig. 9. 
The hardware implementation of the multiplication 

with φ = {11}2 can be obtained as follows. 
 
k = k1x + k0 =(q1q0)(112)=(q1x + q0)(x+1) 
k = q1x2 +(q0+ q1)x+q0 

 
Substitute the term x2 with x+1, yield the expression 

below. 
k=q0x+(q0+q1) ∈ GF(2) 
 

Hence, the formula for computing multiplication 
with 
φ = {11}2 can be derived and is shown in Fig. 10. 
k1 = q0 
k0 = q0+q1 

For the implementation of 
MixColumn/InvMixColumn, the architecture proposed 
in [12] was used, in which the “XTime” block 
implements the constant multiplication by {02} in 
GF(28), the “X4Time” block computes the constant 
multiplication of {04}16 and can be implemented by two 
serially concatenated “XTime” block and Si,c denotes 
the i-th byte of the c-th column of the state matrix. Fig. 
11 illustrates the architecture for efficient 
implementation of MixColumn/InvMixColumn. 
 

 
Fig. 9. Hardware implementation of the multiplication with 
φ={10}2. 
 

 
Fig. 10. Hardware implementation of the multiplication with φ 
= {11}2. 



22                                                        Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 1, March 2012 

 
Fig. 11 Efficient implementation of MixColumns/ 
InvMixColumns [12]. 
 
5. Previous Works 

In [13] Rostovtsev and Shemyakina describe using 
ofisomorphisms of the underlying finite field. But as the 
authors admit, their method has comparatively small 
efficiency. The technique proposed in [14] randomizes 
power consumption of SBox by randomly choosing 
irreducible generator polynomials of the field GF(28). 
The approach is interesting but introduces significant 
hardware cost with almost 300% increase in area and 
60% decrease in speed. Another method based on 
univariate polynomials of Blomeret. al. has been 
illustrated in [15]. This can be seen as a perfectly 
general method that can be applied to any S-box, as any 
function over a finite field can be seen as a univariate 
polynomial. This makes the method more efficient than 
in the general case and suitable for Rijndael. However, 
it suffers from considerable decrease in performance. 
Tower Fields Methods by Oswald, et al. [16, 17] are 
designed for hardware implementations. In these 
methods, the computing of Inv in GF(22k) is reduced to 
a secure computation with masked values of 
multiplications and inverses in GF(2k), by representing 
GF(22k) as a quadratic extension of GF(2k). 
Multiplications can be computed with additive masking 
and we are left with the problem of a secure 
computation of Inv at the lower level. In [18] Schramm 
proposes mask multipliers for GF(22) and GF(24) which 
are used in the masked composite field-based AES 
SBox for software applications. However, this approach 
needs 1536 bytes ROM to store the masked SBox and 
takes 13600 clock cycles to implement masked AES 
encryption while a similar unmasked AES realization 
takes 800 cycles. 

6. New Proposed Approach 
In the power analysis, the key detection is possible 

because of the dependency between the power 
consumption of devices and the intermediate values of 
the cryptographic algorithms. Therefore, if we want to 
prevent from these kinds of attacks, this dependency 
should be broken. Considering this fact, we have studied 
the structure of SBox and based on our knowledge of 
math, the three parameters {Ф, λ, δ} are not constant 
since there could be much more than one eligible 
isomorphism (see Figs. 4 and 5). The polynomial 
ଵܲ(ݔ) ଶݔ	= + ݔ + ߶ is an irreducible polynomial over 

the field GF(22) if and only if 1<Ф<4, and 
ଶܲ(ݔ) = ଶݔ + ݔ +  is irreducible over GF(24) if and ߣ

only if 7<λ<16. So, there are 16 different combinations 
for {ϕ ,	λ}. We can also search in the set of linear 
transformations from GF(28) to itself or all 
autoisomorphism over GF(28) and it can be proved that 
there are ∏ (2଼

୧ୀ − 2୧) of such transformations. So we 
can have the same number of different δ/δ-1 [19, 20] and 
considerable number of sets {Ф, λ, δ, δ-1} for Rijndael. 
It must be mentioned that all of the possible 
combinations of {Ф, λ, δ, δ-1} will not result in an 
appropriate field isomorphism. We have found 32 
different suitable sets of the mentioned parameters 
which can be implemented with minimum 
combinational logic. For example, these three following 
sets have such characteristics. The elements of matrices 
δ and δ-1 and the values of Ф and λ are represented in 
decimal. 
 
Ф= 2, λ = 15 
δ= {160, 126, 114, 162, 182, 84, 16, 217}T 
δ-1={46, 28, 174, 2, 122, 26, 144, 75}T 
 
 
Ф= 3, λ = 12 
δ= {160, 222, 172, 174, 202, 238, 44, 227}T 
δ-1={102, 212, 230, 162, 10, 234, 176, 233}T 
 
Ф= 3, λ = 10 
δ= {160, 126, 172, 2, 20, 132, 130, 99}T 
δ-1= {190, 132, 62, 106, 98, 2, 112, 141}T 

 
Therefore, one can make a random isomorphism by 

generating different sets of {Ф, λ, δ, δ-1} and randomly 
choosing them in each block encryption/decryption. As 
described, two ciphers are isomorphic if they produce 
the same output for the same input. Hence, from the 
architectures shown in Figs. 4 and 5, it is obvious that 
we can have many SBoxes with similar input/output 
pairs and different internal structures. As it was shown 
in section 4, it is simple to realize and select different 
architectures of SBox based on different values of 
{Ф, λ, δ, δ-1} since such changes can be easily realized 
by Boolean gates only (please see figures 5-10). As a 
result, for a specific input, there will be different power 
consumption patterns while the output remains the 
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same. Since different binary values are used each time, 
power traces collected for DPA will be weakly 
correlated to the data being manipulated and it will be 
harder to extract the secret key or any other sensitive 
information, even if many runs are performed for the 
same inputs. The proposed technique effectively 
reduces the signal to noise ratio (SNR) of the performed 
operations. As we know, the SNR quantifies how much 
information is leaking from a power trace. The most 
important features of the proposed method are that it 
does not change the mathematical properties of SBox at 
all, do not decrease the working frequency and has very 
low area overhead because any change in the 
architecture of Figs. 5 and 6 can be easily realized by 
Boolean gates only. In addition, it is very simple 
compared with those presented in the literature and fully 
complies with the published standard. No additional 
parameters than the secret key and the data to be 
processed are needed. The operation of the system is as 
follows: at first all 32 (or more) possible sets of values 
for {Ф, λ, δ, δ-1} are produced and stored. In our 
prototype, a linear feedback shift register (LFSR) is 
used as a pseudorandom number generator for proof of 
the concept. Encryptor and decryptor agree on the initial 
state of this LFSR as they agree on the cipher key. In 
each block encryption/decryption, one set is chosen by 
pseudorandom number generator and one of the 32 
corresponding SBox architectures (as was shown in 
Figure 5) is selected randomly. This results in very low 
area overhead with no decrease in speed or clock 
frequency since no hardware module has been added to 
the critical path. In order to prevent any power 
information leakage when the output of SBox is stored 
in the output register, another random number generator 
selects two other δ-1 matrices randomly and multiplies 
the pre-final value to them concurrently in a parallel 
path. This make power consumption pattern of the final 
stage of SBox computation indistinguishable for the 
attacker and prevents the adversary to mount a 
successful attack on this point. This concurrent 
multiplication can be easily performed in FPGA since it 
is one of the inherent advantages of FPGA. The 
simplicity of this approach makes it suitable for both 
hardware and software applications. Since the 
mentioned parameters could be easily stored inside the 
device, the proposed approach could be used in smart 
cards, digital signal processors or other security tokens. 
 
7 Attack on a Real System 

To investigate the effect on efficiency of 
implementing a device using the new style, both regular 
AES and the new design were realized in a loop 
architecture in which only one block of data is being 
processed at a time, using Verilog HDL and were 
synthesized on a Xilinx Spartan-II FPGA. Both used 
128-bit keys. The encryptor core structure in regular 
AES occupied 983 CLB slices (41%), on targeting 
Xilinx Spartan-II FPGA device while this number for 

the modified implementation with 32 randomly selected 
SBoxs was 1050. This means that the total area cost for 
the implementation is almost 7%, much lower than the 
results reported in the literature so far. The clock speed 
in both cases was almost 42.2 MHz. Our measurement 
setup, as it is shown in Figure 12, consists of the FPGA 
board, an Agilent MSO7034A sampling oscilloscope 
with a 2 GS/sec and BW=350 MHz. The board uses two 
separate power supplies, a 3.3 V supply for I/O and a 
2.5V supply for the core cells. Only the core power 
supply was measured. A small resistor (10 ohm) was 
inserted between the FPGA board and the power supply. 
In order to reduce switching noise and to improve the 
accuracy, the working frequency of FPGA board was 
lowered to 1 KHz and all measurements were averaged 
over ten times. 

In order to improve the SNR and accuracy of the 
attack, instead of considering a mono-it, a set of four bit 
was considered, i.e. our selection function returns one 
when hamming weight of the output of SBox is greater 
than four, and otherwise it returns zero. It has been 
shown that the efficiency of the attack is increased in 
such a case since the ghost peaks and secondary peaks 
are lowered [21]. 
The experimental results for the differential power 
traces for the correct and a wrong subkey guesses are 
shown in Fig. 13 and Fig. 14 respectively. As it is seen, 
the plots confirm the assumption about the 
measurability of Hamming-Weights leakage. We need 
approximately 1,000 measurements to identify the 
correct key. 
 

 
Fig. 12. Experimental setup used for mounting the attack. 
 

 
Fig. 13 Differential power traces for the correct subkey guess 
in the unprotected implementation. 
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Fig. 14 Differential power traces for a wrong subkey guess in 
the unprotected implementation. 
 

 
Fig. 15 Recovering the correct subkey using a correlation 
attack with real measurements. 
 

 
Fig. 16 Differential power traces for a correct subkey guess in 
the modified implementation. 
 

The results of calculation of correlations for the first 
subkey are shown in Fig. 15, in which the correct value, 
0x3C, appears as a clear peak. Our experiments showed 
that recovering the full 128-bit key with this method 
takes almost two hours with an Intel 2.5 GHz quad 
processor computer. 

The setup was repeated using an implementation of 
the new algorithm. Fig. 16 and Fig. 17 show the 
differential power traces for the correct and wrong key 
guesses in the protected version respectively. As it is 
seen the correct key cannot be distinguished from the 
wrong key as there is more much noise in the system. 
Fig. 18 and Fig. 19 show two different patterns of 
powertraces when inputting the same plaintext. Fig. 20 
shows the correlations for each possible key guess in the 

modified implementation after 1000 traces. This time 
the correct value is completely obscured by other values 
and there are no clear peaks, just a band of random 
values. The experiment was repeated with a new key 
schedule, this time 6000 power traces were recorded. 
Again, the correct value was not distinguishable from 
the incorrect ones. 
 
 

 
Fig. 17. Differential power traces for a wrong subkey guess in 
the modified implementation. 
 
 

 
Fig. 18. Differential power traces for a known plaintext in the 
modified implementation with a specific set of parameters {Ф, 
λ, δ, δ-1}. 
 
 

 
Fig. 19. The differential power traces for the same plaintext in 
the modified implementation with another set of parameters 
{Ф, λ, δ, δ-1}. 
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Fig. 20 Result of correlation analysis for recovering the 
correct subkey in the modified implementation. 
 
8. Countermeasures and Challenges 

In recent years, there has been a lot of work done to 
prevent side-channel attacks. The methods can generally 
be divided into software and hardware countermeasures, 
with the majority of proposals dealing with software 
countermeasures. “Software” countermeasures refer 
primarily to algorithmic changes, such as masking of 
secret keys with random values, which are also 
applicable to implementations in custom hardware or 
FPGA. Hardware countermeasures often deal either 
with some form of power trace smoothing or with 
transistor-level changes of the logic. Neither seems to 
be easily applicable to FPGAs without support from the 
manufacturers. However, some proposals such as 
duplicated architectures might work on today’s FPGAs. 
Many of the mitigations that are intuitively put forward, 
such as the randomization of the execution sequence or 
the addition of a random power consuming module or a 
current sink, hardly improve the resistance against the 
power attacks [22]. In the present state-of-the-art, the 
countermeasures try to make the power consumption of 
the cryptographic device independent of the signal 
values at the internal circuit nodes by either 
randomizing or flattening the power consumption. None 
of the techniques, however, provides perfect security 
instead they increase the required number of 
measurements. As mentioned, randomizing the power 
consumption is done with masking techniques that 
randomize the signal values at the internal circuit nodes 
while still producing the correct cipher text. This can be 
done at the algorithmic level where a random mask is 
added to the data prior to the encryption and removed 
afterwards without changing the encryption result (e.g. 
[23]) or at the circuit level where a random mask-bit 
equalizes the output transition probabilities of each 
logic gate [24], [25]. Flattening the power consumption 
is done at the circuit level such that each individual gate 
has a quasi data-independent power dissipation. This is 
done with dynamic differential logic, sometimes also 
referred to as dual rail with precharge logic to assure 
that every logic gate has a single charging event per 
cycle [26]. In self-timed asynchronous logic [27], the 

terminology refers to dual rail encoded data interleaved 
with spacers. 

The increased power attack resistance does not come 
for free. The algorithmic level masking has a factor 1.5 
overhead when compared with a regular (unprotected) 
design [23]. The masked logic styles have a factor 2 and 
5 area overhead [24], [25]. The dual rail logic styles 
have a factor 3 area overhead [28]. Yet, the figures for 
the algorithmic and logic masking do not include the 
random number generator. It is thus important that the 
full implementation cost of a countermeasure is clearly 
communicated and taken into account for evaluation. 
Several techniques have been proposed to reduce the 
area overhead. For instance, custom logic cells can be 
made more compact than compound standard logic cells 
and security partitioning reduces the part of the design 
that has to be protected [28].The fundamental question 
here is that can these techniques be optimized further or 
can a breakthrough mitigation technology be developed 
with a lower overhead? 

Yet, one has to be careful to declare a (new) 
mitigation as secure. A visual inspection, or even the 
standard deviation of the power consumption, does not 
provide any indication [29]. Thus far, the best figure of 
merit is probably the required number of measurements 
for a successful attack on a realistic circuit. The success 
of an attack, however, depends both on the information 
in the power consumption and on the strength of the 
attacker, which encompasses the measurement setup but 
also the leakage estimation and the statistical technique 
used. Indeed, if the power estimation is more accurate, 
the attack will be more successful. The statistical 
analysis technique to compare the measurements with 
the estimations is also important: the difference of 
means test requires more measurements then the 
correlation test, which requires more measurements then 
the Bayesian classification. Some work has been done 
to distinguish the quality of an implementation from the 
strength of a side-channel adversary [24], but it is not 
clear how in a practical way a design can be evaluated 
without an attack and with abstraction of the statistical 
tool or distinguisher. Another important question here is 
that can an expression be found that based on design 
parameters such as the activity factor or a power 
consumption profile indicates the strength of a design? 
These are some examples of open questions and open 
research areas about the use of FPGA as a module of 
security. Of course, replying these questions is an 
important, challenging and motivational task. 
 
9. Conclusions 

As a conclusion, it can be said that even an 
encryption standard that has proved its robustness 
theoretically, may be vulnerable when implemented on 
hardware devices such as FPGAs. This work confirmed 
that power analysis has to be considered as a serious 
threat for FPGA security. We were able to recover the 
128-bit secret key in almost two hours. Although certain 
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features of FPGAs make the practical implementation of 
power attacks significantly harder than in the smart card 
context, we have conduced relevant experimental tests 
that led us to find the encryption key. In addition, a 
novel AES implementation with a simple and integrated 
countermeasure against DPA was presented. The 
countermeasure is based on mathematical properties of 
Rijndael algorithm and retains perfect compatibility 
with the published Standard. The new design permits 
the construction of actual cores with very efficient area 
and speed characteristics, while still keeping a high 
protection level. Many solutions would allow improving 
our measurements and a lot of questions concerning the 
physical security of FPGAs remain open. The efficiency 
of the attack may be improved by combining this 
method with other side-channel technique. As many 
state-of-the-art cryptosystems use FPGA and processors 
simultaneously, successful implementation of DPA on 
such systems may be an interesting research subject for 
both academia and industry. Protecting against the 
attacks exploiting the information, however, can be a 
challenge, is costly and must be done with care. 
 
References 
[1]  Kocher P., Jaffe J. and Jun B., “Differential 

power analysis”, Advances in Cryptology- Crypto 
1999, LNCS, Vol. 1666, pp. 388-397, Springer-
Verlag, 1999. 

[2]  Coron, J., Prouff E. and Rivain M., “Side channel 
cryptanalysis of a higher order masking scheme”, 
CHES 2007, LNCS, Vol. 4727, pp. 28–44, 
Springer-Verlag. 

[3]   Masoomi M., Masoumi M. and Ahmadian M., “A 
practical differential power analysis attack against 
an FPGA implementation of AES cryptosystem”, 
IEEE I-Society, London, UK, 2010. 

[4]   Standaert F. X., Peeters E., Mace F., and 
Quisquater J. J., “Updates in security of FPGA 
against differential power attacks”, ARC2006, 
LNCS 3958, pp. 335-346, Springer-Verlog, 2006. 

[5]   Fereidunian A., Lesani H., Lucas C., Lehtonen M. 
and Nordman M. M., “A Systems Approach to 
Information Technology (IT) Infrastructure 
Design for Utility Management Automation 
Systems”, Iranian Journal of Electrical and 
Electronic Engineering, Vol. 2, No.3, pp. 91-104, 
2006. 

[6]   Courtois N. T. and Goubin L., “An Algebraic 
Masking Method to Protect AES against Power 
Attacks”, ICISC 2005, LNCS 3935, pp. 199–209, 
Springer-Verlag, 2005. 

[7]   Mirhosseini S. and Ayatollahi A., “A low-
voltage, low-power, two-stage amplifier for 
switched-capacitor applications in 90 nm CMOS 
process”, Iranian Journal of Electrical and 
Electronic Engineering, Vol. 6, No. 4, pp. 199-
204, 2010. 

[8]   Karimi, G. R. and Mirzakuchaki S., “Behavioral 
modeling and simulation of semiconductor 
devices and circuits using VHDL-AMS”, Iranian 
Journal of Electrical and Electronic Engineering, 
Vol. 4, No. 4, pp.165-175, 2008. 

[9]   Moore S., Anderson R., Mullins R., G. Taylor, 
and Fournier J. J. A., “Balanced self-checking 
asynchronous logic for smart card applications”, 
J. of Microp. and Microsystems, Vol. 27, No. 9, 
pp. 421-430, 2003. 

[10]  Ors S. B. and Oswald E., “Power analysis attacks 
against FPGA, first experimental results”, CHES 
2003, LNCS 2779, pp. 35-50, Springer-Verlag, 
2003. 

[11]  Daemen J. and Rijmen V., AES Proposal 
Rijndael, National Institute of Standards and 
Technology, July 2001. 

[12]  Zhang X. and Parhi K. K., “High-Speed VLSI 
architectures for the AES algorithm”, IEEE 
Trans. Very Large Scale Integration (VLSI) 
Systems, Vol. 12, No. 9, pp. 957-967, 2004. 

[13]  Rostovtsev A. G. and Shemyakina O. V., “AES 
side channel attack protection using random 
isomorphisms”, Available on: 
http://eprint.iacr.org/2005/087.pdf. 

[14]  Ghellar F. and Lubaszewski M. S., “A novel AES 
cryptographic core highly resistant to differential 
power attack”, BCCI’08, pp. 29-35, Gramado, 
Brazil, 2008. 

[15]  Blömer J., Guajardo J. and Krummel V., 
“Provably secure masking of AES”, in Selected 
Areas in Cryptography Workshop, pp. 69-83, 
2004. 

[16]  Oswald, E., Mangard, S. and Pramstaller, N., 
“Secure and efficient masking of AES -amission 
impossible?”, eprint.iacr.org/2004/134. 

[17]  Oswald, E., Mangard, S., Pramstaller, N. and 
Rijmen, V., “A side-channel analysis resistant 
description of the AES S-Box”, FSE 2005, pp. 
413-423, 2005. 

[18]  Schramm K., Advanced methods in side‐channel 
cryptanalysis, Ph. D. Thesis, University of 
Bochum, Germany, 2006. 

[19]  Xiao L. and Heys. H. M., “Hardware design and 
analysis of block cipher components”, in 5th Int. 
Conf. on Information Security and Cryptology 
(ICISC’02), Seoul, Korea, November, 2002. 

[20]  Lidl R. and Niederreiter H., Introduction to finite 
field and applications, Cambridge University 
Press, 1986. 

[21]  Ha Lee, Canovas C. and Cledier J., “An overview 
onside-channel analysis attacks” ASIACCS’08, 
pp. 33-43, March, 18-20, 2008. 

[22]  Clavier C., Coron J. and Dabbous N., 
“Differential power analysis in the presence of 
hardware countermeasures” CHES 2000, pp. 252-
263, 2000. 



Masoumi: A DPA Resistant FPGA Implementation of AES Cryptosystem with …                                                            27 

[23]  Pramstaller N., Gürkaynak F., Häne S., Kaeslin 
H., Felber N. and FichtnerW., “Towards an AES 
crypto-chip resistant to differential power 
analysis”, ESSCIRC, pp. 307-310, 2004. 

[24]  Suzuki D., Saeki M. and Ichikawa T., “Random 
switching logic: acountermeasure against DPA 
based on transition probability”, IACR ePrint, rep. 
2004/346, 2004. 

[25]  Popp T. and Mangard S., “Masked dual-rail pre-
charge logic: DPA resistance without the routing 
constraints” CHES 2005, pp. 172-186, 2005. 

[26]  Tiri K., Akmal M. and Verbauwhede I., “A 
dynamic, differential CMOS logic with signal 
independent power consumption to withstand 
differential power analysis on smart cards”, 
ESSCIRC, pp. 403-406, 2002. 

[27]  Moore S., Anderson R., Mullins R. and Taylor G., 
“Balanced self checking asynchronous logic for 
smart card applications”, J. Microprocess. 
Microsyst., Vol. 27, pp. 421-430, 2003. 

[28]  Tiri K., Hwang D., Hodjat A., Lai B.-C., Yang S., 
Schaumont P. and Verbauwhede I., “AES-Based 

cryptographic, biometric security coprocessor IC 
in 0.18-μm CMOS resistant to side-channel 
power analysis attacks”, VLSI Sympusium, pp. 
216-219, 2005. 

[29]  Tiri K. and Verbauwhede I., “Simulation models 
for side-channel information leaks” DAC, pp. 
228-233, 2005. 

 
 

Massoud Masoumi received his BSc 
from Guilan University, Rasht, Iran in 
1996 and MSc and PhD from K.N. 
Toosi University of Technology, 
Tehran, Iran, in 1999 and 2006 
respectively, all in electronics 
engineering and all with honor degree. 
In 2009, he finished a post doctoral 
research in the context of power 

analysis attack to symmetric key cipher systems in K. N. 
Toosi University of Technology. His research interests include 
side-channel attacks and related countermeasures and efficient 
VLSI architecture design for digital signal processing systems, 
error-correcting codes, and cryptosystems. 

 


