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Abstract:Accurate and reliable time is necessary for financial and legal transactions, 
transportation, distribution systems, and many other applications. Time synchronization 
protocols such as NTP (the Network Time Protocol) have kept clocks of such applications 
synchronized to each other for many years. Nowadays there are many commercial GPS 
based NTP time server products at the market but they almost have a high price. In this 
paper we are going to use a Low Cost GPS engine to build a time server to provide time 
synchronization with accuracy of a few milliseconds. This time server is relatively very 
cheap and it can be used in almost all typical applications. We also proposed a software 
based NTP time server implemented in MATLAB as well. 
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1 Introduction1 
We may usually set our computer’s time by our 
wristwatch to within a minute or two, but on the other 
side accurate and reliable time is necessary for financial 
and legal transactions, transportation, distribution 
systems, and many other applications involving widely 
distributed resources. To make sense, as an example, in 
a distributed airline reservation system a seat can be 
sold twice or not at all if the distributed computers vary 
in time or there may be legal consequences when an 
online stock trade is completed, before it is bid [1]. In 
this regard, coordination to an international time scale 
and clock synchronization have been developed. The 
basis for this international level has been refined 
throughout history and sidereal time, earth rotation 
based time and atomic time have been developed [2]. 
Some important time scales with a brief description are 
presented in Table 1 and a recorded example of them on 
April 27, 2011 is shown in Table 2 [3]. 

Clock synchronization deals with the idea that 
internal clocks of several computers may differ Even 
when initially set accurately, real clocks will differ after 
some amount of time due to clock drift [4], caused by 
clocks counting time at slightly different rates so there 
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is always need for keeping these drifty clock 
synchronous to a reference clock or with another more 
accurate clock. 
 
Table 1 A brief description of some important time scales. 

Time 
scales Description 

TAI 

International Atomic Timea, is the international 
atomic time scale based on a resonance frequency 
between selected energy levels of Cesium atom to 
an accuracy of a few parts in 1012 [5] 

UTC 
Coordinated Universal Timea. UTC is presently 
slow relative to TAI by a fraction of a second per 
year 

LT Local time differs from UTC by the number of 
hours of a time zone. 

GPS 

Global Positioning System time is the atomic time 
scale implemented by the atomic clocks in the 
GPS ground control stations and the GPS 
satellites themselves. The general GPS system 
time is expressed as a week number and the 
number of elapsed seconds in that week. 

a. Conventional cultural sensibilities require descriptive terms in 
English and abbreviations in French. 

 
Table 2 Recorded example of important time scales recorded 
on April 2011. 

LT 2011-04-27
16:50:19 Wednesday Day117 Time zone 

UTC+4.5 

UTC 2011-04-27
12:20:19 Wednesday Day117 MJD 

55678.5141 

GPS 2011-04-27 
12:20:34 Week 1633 303634 s 

Cycle1, 
week 0609, 

day 3 

TAI 2011-04-27
12:20:53 Wednesday Day 117 34 leap 

seconds 
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Synchronization directly to UTC requires a 
specialized radio or satellite receiver, or telephone 
modem source. Such sources are available for many 
governmental and industrial dissemination services, 
including the Global Positioning System (GPS), 
WWV/H and WWVB radio time/frequency stations [6] 
and [7]. U.S. Naval Observatory (USNO) and National 
Institute of Science and Technology (NIST) telephone 
modem services in the United States [8], DCF77 long 
wave radio time station in Germany, JJY radio time 
station in Japan, as well as similar systems and services 
in other countries [9]. If every computer be equipped 
with one of these clocks, the entire above mentioned 
problems would be solved, but for reasons of cost, 
unavailability in some places and their complexity it is 
not possible to equip every computer with a reference 
clock. Furthermore, the reliability requirements for time 
synchronization may be so strict that a single clock 
cannot always be trusted. Therefore, for time 
synchronization in practice, a structure similar to Fig. 1 
is being used.According to that, some numbers of 
computers are getting time from reference clocks 
themselves and then act as primary time servers to feed 
a much larger group of secondary servers and clients 
connected with a common network with an accurate and 
reliable time. 

Reference clocks at the top of the hierarchy should 
be very accurate; Nowadays Thanks to the many 
progresses in Global Positioning System, its time 
accuracy over radio stations (GPS: short-term accuracy 
of ± 1 microsecond, while radio signal accuracy is: +5 
to +25 millisecond [10]), Noise Immunity, and 
worldwide availability for free, GPS based Clocks are 
used very often as the reference clocks over the other 
clock recourses. 

At the present time there are many commercial GPS 
time synchronization products at the market but they 
almost have a high price, for instance a typical one is 
about two thousand dollars, therefore in this paper we 
are going to use a low cost GPS engine to build a 
precise clock for time synchronization. This clock is 
relatively very cheap and it can be used in almost all 
typical applications. 

The remainder of this document is organized as 
follows. Section 2 describes some important time 
synchronization protocols. In Section 3 we explain how 
a Computer Network Time is Synchronized Using the 
Network Time Protocol (NTP). A brief explanation of 
timing data in a GPS receiver is clarified in section 4. 
Section 5 proposes a MATLAB based and a standalone 
time server board for synchronizing computer networks 
time. Finally computer network time synchronization 
results for the two proposed time servers and conclusion 
are presented in sections 6, 7 respectively. 
 

 
Fig. 1 A typical time synchronization structure. 
 
2 Time Synchronization Protocols 

To keep time of computers synchronized to the 
primary time servers in a distributed network, clock 
synchronization protocol is required that can read a 
server clock, transmit the reading to one or more clients, 
and adjust each client clock as required. 

The various synchronization protocols in use today 
provide different means to time synchronization, but 
they all follow the same general model. The client sends 
a request to the server and the server responds with its 
current time and for the best accuracy, the client needs 
to measure the server-client propagation delay to 
determine the true time offset relative to the server. 

Some Important standard time synchronization 
protocols are as follows: 

 
2.1   Time Protocol 

Time protocol, specified in RFC868 [11], provides a 
site-independent, machine readable date and time. This 
simple protocol returns a 32-bit unformatted binary 
number that represents the time in Universal Time 
Coordinate (UTC) seconds since January 1, 1900. The 
server listens for time protocol requests on port 37, and 
responds in either TCP/IP or UDP/IP formats. Since the 
TIME protocol sends timestamps in seconds, it can 
provide only ±1 second accuracy. 

 
2.2   Daytime Protocol 

Daytime Protocol, specified in RFC867 [12] is 
widely used by small computers that run MS-DOS and 
similar operating systems. The server listens on port 13, 
and responds to requests in either Transmission Control 
Protocol/Internet Protocol (TCP/IP) or User Datagram 
Protocol/Internet Protocol (UDP/IP) formats. The 
standard does not specify an exact format for the 
daytime protocol, but requires that the time is sent using 
standard ASCII characters. Similar to TIME protocol 
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daytime protocol sends timestamps in seconds and it can 
provide only ±1 second accuracy too. 

 
2.3   Network Time Protocol 

Network Time Protocol (NTP) originally specified 
in RFC958 [13] and later in RFC1059 [14], RFC1119 
[15], RFC1305 [16], and current version of RFC5905 
[17], is the most complex and sophisticated of the time 
protocols for synchronizing computer clocks across a 
network. Because NTP software is often bundled with 
the operating system it is the most common used 
protocol for computer network time synchronizations. 
The NTP client software runs continuously as a 
background task that periodically receives updates from 
one or more servers. The client software ignores 
responses from servers that appear to be sending the 
wrong time and averages the results from those that 
appear to be correct. The NTP servers listen for a NTP 
request on port 123, and respond by sending a UDP/IP 
data packet in the NTP format. The time stamps in this 
time protocol are in 64-bit, consist of 32-bit second part 
and 32-bit fractional seconds part allowing theoretical 
resolution of 2-32 second (233 picoseconds), but in 
practice the accuracy of NTP depends on the network 
environment. In most places of the Internet of today, 
NTP provides time accurate to the order of 10-100 
msec. while Under good conditions on a LAN without 
too many routers synchronization to within a few 
milliseconds is normal [18]. 

 
2.4   Simple Network Time Protocol 

Simple Network Time Protocol (SNTP) originally 
specified in RFC1361 [19] and later in RFC1769 [20], 
RFC2030 [21], and the current version RFC4330 [22], 
is a less complex implementation version of NTP. It 
provides a simplified access strategy for servers and 
clients that do not require the degree of accuracy of the 
NTP protocol. The network packet formats of both NTP 
and SNTP protocols are identical, and the two are 
interoperable. The main difference between the two is 
missing the complex filtering algorithms to maintain an 
accurate time that NTP provides and the accuracy is 
around tens of milliseconds [18]. 

 
2.5   Precision Time Protocol 

The Precision Time Protocol (PTP), as defined 
originally in the IEEE 1588-2002[23] and then with 
IEEE 1588-2008[24] standard, provides a method to 
precisely synchronize computers over a Local Area 
Network requiring accuracies beyond those attainable 
using NTP. An existing LAN, PTP is capable of 
synchronizing multiple clocks to better than 10 
microseconds RMS, but on the other hand it is more 
expensive in implementation than NTP [25]. 

 

3 Computer Network Time Synchronization Using 
NTP 

For being open source, having sufficient accuracy 
for typical applications and the ability to work on large 
networks, NTP is the one widely in use on the public 
Internet and numerous private networks for over almost 
three decades. NTP comes with most flavors of 
Windows as well as all flavors of UNIX. About 25 
million clients implode on the NTP time servers at 
NIST alone [18]. 

 
3.1   Computer Clocks and NTP 

Most computers have quartz or surface acoustic 
wave (SAW) resonator stabilized oscillator and a 
hardware counter that interrupts the processor at 
intervals of a few milliseconds, called the tick [18]. At 
each tick interrupt, this value is added to a system 
variable representing the clock time. Clock errors are 
due to systematic (offset) variations in network delays 
and latencies in computer hardware and software (jitter), 
as well as clock oscillator wander. The time of a 
computer clock relative to ideal time can be expressed 
as Eq. (1) [18]: 

ܶሺݐሻ ൌ ܶሺݐሻ  ܴሺݐ െ ሻݐ  ݐሺܦ െ ሻଶݐ   ሻ         (1)ݐሺݔ

where t is the current time, t0 is the time at the last 
measurement update, T is the time offset, R is the 
frequency offset, D is the drift due to resonator aging, 
and x is a stochastic error term. 

The first two terms include systematic offsets that 
can be bounded by some analysis and NTP estimate 
these two. The third term is usually dominated by errors 
in the first two terms and the last random variations that 
cannot estimated because of its stochastic 
characteristics. 

 
3.2   Network Time Protocol Principles 

NTP has three major parts: the NTP software 
program, called a daemon in UNIX and a service in 
Windows; a protocol that exchanges time values 
between servers and clients; and a suite of algorithms 
that processes the time values to advance or retard the 
system clock [18]. For instant, we are not going to cover 
all the three but we are intending to describe the 
Protocol which is in need for designing a NTP time 
server. Further details can be found in the formal 
specifications [14-17]. 

The most important field in the NTP packet is the 
time stamp field, as it is shown in Fig. 2 an NTP 
timestamp is a 64-bit unsigned fixed-point number, with 
the integer part in the first 32 bits showing the past 
seconds from 0h 1 January 1900 and the fraction part in 
the last 32 bits. 

The precision of this representation is about 2ିଷଶ 
second (233 picoseconds), which should be adequate for 
even the most exotic requirements. 
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Fraction of second(32bit) Second since 1900(32bit) 

Fig. 2 NTP packet timestamp format. 
 

Table 3 NTP packet timestamp conversion example. 
Time  Apr 26,2011 20:05.563181 
Difference time from 0h 1 
January 1900 

111 years, 3 months, 3 
weeks, 4 days  

Total seconds difference 3512764800 seconds 
Fractional part 0.56318 seconds 
NTP time stamp second 
field 

3512837107 seconds  
(Hex: D161A3F3) 

NTP time stamp fraction of 
second field 

0.563181 seconds 
(Hex:902CA4C0) 

 
To convert a time to this format we should calculate 

the seconds past since 0h 1 January 1900, leap years 
should be also considered. An example of this 
conversion is shown in Table 3. 

Note that since some time in 1968 the most 
significant bit of the 64-bit field has been set and that 
the field will overflow some time in 2036, for making 
NTP work even from that time on, there will be 128-bit 
time stamps format in the next NTP versions in which 
the years can span the age of the universe. 

Fig. 3 shows how the timestamps are numbered and 
exchanged between server B and client A. First, client A 
sends the current time, T1, to server B. Upon arrival, B 
saves T1 along with the current time T2. Server B does 
not have to respond immediately, because it may have 
other duties. Sometime later, B sends the current time 
T3, along with the saved T1 and T2 to A. Upon arrival, 
A reads its clock, T4, and proceeds to compute both 
time offset θ and round-trip delay δ relative to B 
according to Eq. (2) and Eq. (3): 

θ ൌ ଵ
ଶ
ሾሺܶ2 െ ܶ1ሻ  ሺܶ3 െ ܶ4ሻሿ                                  (2) 

δ ൌ ሺܶ4 െ ܶ1ሻ  ሺܶ3 െ ܶ2ሻ                                       (3) 

These values are processed in client by a suite of 
three concatenated algorithms, including the selection, 
clustering, and combining algorithms [18], the protocols 
also provide a way to detect duplicate and bogus 
packets. The result of the algorithms is a single time 
value representing the best guess of the system clock 
offset then the adjustment is implemented by the system 
clock. 

The NTP packet is a UDP datagram [26]. The NTP 
packet header shown in Table 4 has 12 words followed 
by optional extension fields and an optional message 
authentication code (MAC). Following is a short 
description of the various fields. A complete description 
is given in [14-17]. 

Leap Indicator (LI): Warns of an impending leap 
second to be inserted or deleted in the UTC timescale at 
the end of the current day. 

Version Number (VN): Identifies the NTP version. 

 
Fig. 3 Client (A) and server (B) NTP packet exchange. 

 
Table 4 NTP Packet Header. 

LI VN Mode Stratum Poll Precision 
Root Delay 

Root Dispersion 
Reference ID(32 bit) 

Reference Timestamp (64 bit) 
Originate Timestamp (64 bit) 
Receive Timestamp (64 bit) 
Transmit Timestamp (64 bit) 
Extension Field 1 (optional) 
Extension Field 2 (optional) 

MAC (optional) 
 
Mode, Stratum, and Precision: Indicate the current 

operating mode, stratum and local-clock precision. 
Poll Interval (Poll): The current desired interval 

between NTP messages sent. 
Root Delay: Total round-trip delay to the reference 

clock. 
Root Dispersion: Total dispersion to the reference 

clock. 
Reference ID: 32-bit ASCII [27] string code 

identifying the particular server or reference clock. 
Reference Timestamp: Time when the system clock 

was last set or corrected, in NTP timestamp format. 
Origin Timestamp: Time at the client when the 

request departed for the server, in NTP timestamp 
format. 

Receive Timestamp: Time at the server when the 
request arrived from the client, in NTP timestamp 
format. 

Transmit Timestamp: Time at the server when the 
response left for the client, in NTP timestamp format. 

Destination Timestamp: Time at the client when the 
reply arrived from the server, in NTP timestamp format. 

Extension Field 1and 2: used to add optional 
capabilities for example, the Autokey security protocol 
[28]. 

Message Authentication Code (MAC): consisting of 
the Key Identifier field and Message Digest field [17]. 

 
4 GPS Timing 

Recall from the introduction, GPS receivers can play 
the role of reference clocks; here we explain time data 
in a typical GPS receiver in brief. The GPS receiver we 
used here is NEO-5Q GPS receiver module [29] which 
is a family of stand-alone GPS receivers featuring the 
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