جلد 32، شماره 4 - ( 10-1400 )                   جلد 32 شماره 4 صفحات 18-1 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafarian-Namin S, Fallahnezhad M S, Tavakkoli-Moghaddam R, Salmasnia A, Abooei M H. A Comparative Study on a Triple-Concept Model of Two Techniques for Monitoring the Mean of Stationary Processes. IJIEPR 2021; 32 (4) :1-18
URL: http://ijiepr.iust.ac.ir/article-1-1082-fa.html
A Comparative Study on a Triple-Concept Model of Two Techniques for Monitoring the Mean of Stationary Processes. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1400; 32 (4) :1-18

URL: http://ijiepr.iust.ac.ir/article-1-1082-fa.html


چکیده:   (2839 مشاهده)
In recent years, it has been proven that integrating statistical process control, maintenance policy, and production can bring more benefits for the entire production systems. In the literature of triple-concept integrated models, it has generally been assumed that the observations are independent. However, the existence of correlated structures in some practical applications put the traditional control charts in trouble. The mixed EWMA-CUSUM (MEC) control chart and the ARMA control chart are effective tools to monitor the mean of autocorrelated processes. This paper proposes an integrated model subject to some constraints for determining the decision variables of triple concepts in the presence of autocorrelated data. Three types of autocorrelated processes are investigated to study their effects on the results. Moreover, the results of the MEC and ARMA charts are compared. Due to the complexity of the model, a particle swarm optimization (PSO) algorithm is applied to select optimal decision variables. An industrial example and extensive comparisons are provided
     
نوع مطالعه: پژوهشي | موضوع مقاله: Statistical Process Control Statistical Process Control or Quality Control
دریافت: 1399/3/16 | پذیرش: 1400/8/11 | انتشار: 1400/9/16

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb