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Abstract: In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replace or overhaul equipments or components. The second approach involves the use of sensor-based monitoring of equipment condition in order to predict occurrence of machine failure. Under condition-based (C-B) PM, intervals between PM works are no longer fixed, but are performed only “when needed”. It is obvious that Condition Based Maintenance (CBM) needs an on-line inspection and monitoring system that causes CBM to be expensive. Whenever this cost is infeasible, we can develop other methods to improve the performance of traditional (S-R)-based PM method. In this research, the concept of Bayesian inference was used. The time between machine failures was observed, and with combining Bayesian Inference with (S-R)-based PM, it is tried to determine the optimal checkpoints. Therefore, this approach will be effective when it is combined with traditional (S-R)-based PM, even if large number of data is gathered.
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1. Introduction

Preventive maintenance (PM) involves repair, replacement, and maintenance of equipment in order to avoid unexpected failure during use. The objective of any PM program is minimization of the total cost of inspection, repair, and equipment downtime measured in terms of lost production capacity or reduced product quality (Man et al., 1995). 

In order to perform PM, two approaches were evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replace or overhaul equipment or components. The second approach involves the use of sensor-based monitoring of equipment condition in order to predict when machine failure will occur. Under condition-based (C-B) PM, intervals between PM work are no longer fixed, but are performed only “when needed” (Man et al., 1995).  

The primary disadvantage of (S-R)-based PM is that the results of the calculations are based on the use of mean value as the measure of central tendency. If the standard deviations of these means are large, hence the probability of ascertaining the maintenance interval with accuracy is small. In many of these cases the plant is over-maintained. Other disadvantages include more emergency maintenance, more overtime, and less equipment utilization (Man et al., 1995).

With the development of a Condition-Based Maintenance (CBM) technique though, a more dynamic Preventive Maintenance (PM) practice could be applied. By integrating prediction tools, CBM can determine the required maintenance action prior to any predicted failure on the basis of the conditions observed prior to a previous failure. From this aspect, this technique can be called Condition-Based Predictive Maintenance (CBPM) (Zhou et al., 2006). It has been proven that CBPM is an effective way to minimize maintenance costs, improve operational safety and reduce the frequency and severity of in-service system failures (Zhou et al., 2006; Mobley, 1989).  

Condition-Based Maintenance (CBM) is carried out in response to significant deterioration in a unit’s condition or performance as indicated by a change in a monitored parameter. Predictive maintenance allows the machine to be taken off-line at a predetermined time, which allows production loss to be minimized by scheduling production around the down time (Saranga, 2002).

Condition-monitoring techniques can be classified according to the type of symptoms they are designed to detect. The classifications are (Moubray, 1990).

· dynamic effects, such as vibration and noise levels;

· particles released into the environment;

· chemicals released into the environment;

· physical effects, such as cracks, fractures, wear and deformation;

· temperature rise in the equipment;

· Electrical effects, such as resistance, conductivity, dielectric strength, etc.

CBM has been widely accepted in practice in the past few years since it enables maintenance decisions to be made based on the current state of the equipments. Thus it avoids unnecessary maintenance, replacement and timely maintenance actions while there is a strong indication of impending failure (Jardine et al., 1997).

Niaki and Fallahnezhad (2007) employed Bayesian inference and stochastic dynamic programming to design a decision-making framework in production environment. Further, Fallahnezhad et al. (2007) determined the optimal policy for two-machine replacement problem using Bayesian inference in the context of the finite mixture model. They discussed the analysis of time-to-failure data and proposed an optimal decision-making procedure for machine replacement strategy. Moreover, Fallahnezhad and Niaki (2010) proposed a dynamic programming model for two series machine replacement problem. 

Ivy and Nembhard (2005) integrated Statistical Quality Control (SQC) and partially observable Markov Decision Processes (POMDP) for maintenance decision making of deteriorating systems. In their work, they employed SQC to sample a real-world system and define the observation distribution for the POMDP modeling. Simulation methodology was used in their research to integrate SQC and POMDP to develop and evaluate maintenance policies as a function of process characteristics, system operating and maintenance costs. Merrick et al (2003) presented a Bayesian semiparametric proportional hazards model to describe the failure behavior of machine tools. The semi parametric setup is introduced using a mixture of Dirichlet process prior (Bernardo et al., 1996). 

Bernardo et al.(1996) proposed a Bayesian approach to machine replacement problem, but they did not use the traditional objective function (1). Their objective function is:


[image: image1.wmf](

)

(

)

0

T

fp

CmxdxC

TCT

T

+

=

ò

                                      (1)

where m(x) is the hazard density function of the time to failure. Clearly, they tried to minimize this objective function with respect to T.  They have considered an increasing hazard rate for time between system's failures.
 In this research first it is considered that the time to failure has a constant hazard rate. This assumption is reasonable where at each PM check point, a repair action with fixed cost CP is executed, which instantly returns the system to a like-new condition (perfect PM).

Giardoni and Colosimo (2007) considered a repairable system that operates under a maintenance strategy that calls for complete preventive repair actions at prescheduled times. They tried to determine a confidence interval for prescheduled times of checkpoints. 

Kuo and Yang (2000) considered a masked system lifetime data, the exact component that causes the system's failure is often unknown. For each series system at test, they observe its system's failure time and a set of components that includes the component actually causing the system to fail. The objective is to make inferences for the reliability of the components. They presented A Bayesian approach that uses Gibbs sampling. Similar to this research, Nair et al. (2001) presented some applications of Bayesian inference in reliability and by Gibbs sampling, they tried to determine the favorable parameters.
It is obvious that CBM needs an on-line inspection and monitoring system that causes CBM to be expensive. When this cost is infeasible, it is desired to develop other methods to improve the performance of traditional (S-R)-based PM methods. In this research, the Bayesian inference is employed for monitoring of the system. However, observation was the time interval between machine failures. By combining this approach with (S-R)-based PM, it is tried to determine the optimal checkpoints and we show that this approach will have a significant difference with traditional (S-R)-based PM in results even when the large number of data is gathered. The paper aims to present a new method which implements Traditional (S-R)-Based PM with Bayesian Inference. The rest of the paper is organized as follows. Section 2 introduces a thorough review of the statistical-reliability (S-R) approach to PM and Bayesian Inference, we discuss mathematical computation of proposed approach and Bayesian inference.  Section 3 presents a numerical example for comparing proposed approach with traditional (S-R)-based PM. Finally, the major conclusions of the study are summarized in Section 4.
2. The statistical-reliability (S-R) approach to PM and Bayesian Inference 
An example of a typical S-R PM model is for components that must be replaced when they reach a particular age and It is reasonable to do preventive maintenance only if the following conditions hold good:

· new parts are better than old parts in terms of likelihood of imminent failure or other measures of usefulness;

· The cost of a preventive repair is appreciably less than the cost of a failure and its associated repair.

The objective in this model is to minimize the average cost per unit time which corresponds to minimizing the ratio of the expected cost per cycle and the expected cycle length [1]. If the component is replaced or repaired at time T or at failure, whichever is earlier, hence following is concluded:
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where notations are defined as follows,

Cp: the cost of doing a planned preventive maintenance,

Cf : the cost of recovering from a failure,

TC=: the total maintenance cost per unit time,

f (t): the probability density function of the time to failure.

An application of proposed approach is illustrated by specifying the distribution of the time to first failure as exponential with hazard rate
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Let ti denote the time between (i-1)th and ith failure in the cycle and R denotes the number of the failures , to use a non-informative prior by assuming that parameters of Gamma converge to zero, i.e., the prior distribution of 
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 is Gamma (0,0). Then, using Bayesian inference, the posterior distribution of 
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 is also Gamma with parameters of R and 
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 (Nair et al. 2001). In other words:
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Then, using Bayesian inference again, the probability distribution function of time between failures, f(t),  is determined as follows :
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In the rest of the paper, two cases have been considered. In the first case, it is assumed that time to failure has a constant hazard rate and in the second case, it is assumed that time to failure has an increasing hazard rate 
2.1 Constant Hazard Rate

For evaluating the function 
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 that is determine in equation (4), followings are concluded,
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Also, 
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Now the optimal value of T in function (2) is determined by minimizing the function
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Assuming W and V is defined as follows,
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Following is concluded,
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Thus,
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It is obvious that 
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Consequently, following is concluded,
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From above equation, 
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T

is determined.
 2.2 Increasing Hazard Rate

Assuming that time to failure has an increasing hazard rate; first following assumptions are made,
1. We illustrate an application of our approach by specifying the distribution of the time to failure as weibull distribution. This means that:
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2. We select, as an appropriate prior for 
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,the Gamma distribution given by:
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3. For prior distribution of the shape parameter,
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, it is convenient to define a discrete distribution by using a discretization of the beta density on
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where 
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 are specified parameters. Distribution for 
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 is defined as follows:
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where,
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4. if 
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t

is the between production of defective products, then with the method of likelihood, we obtain the following posterior results (Mazzuchi, and Soyer 1996) 
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where 
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It is assumed that the posterior state of variable 
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 is shown with 
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.

Like previous model, for evaluating function 
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Using the probability distribution function,
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 that is determine by conditional probability, therefore followings are concluded,
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Thus, 
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Also 
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Regarding above results, following is concluded,
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From the above equation, 
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 can be determined.

1 Numerical example

In the first numerical example, it is assumed that time to failure has a constant hazard rate. Assume that mean time to failure is equal to 1 for a special machine and time to failure follows exponential distribution. Therefore the probability density function of time to failure is defined as:
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Assuming CF=76 and CP=8, using the traditional approach to minimize the objective function (1), following is concluded:
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Data in Table 1 has been generated from an exponential distribution with mean 1. The total number of this data is 77.

Insert Table 1 about here
To find the optimal value of T in objective function (1), a search procedure is applied and it is seen that 
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is an optimal solution where the value of objective function is 74.7426 in this case but in the traditional approach (traditional (S-R)-based PM), the value of objective function is 76.90 where 
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. In the other words, Bayesian approach results in tighter intervals for inspection (0.9 hours difference between the checkpoints of these two approaches) that causes less average cost.

Also, with increasing the number of observations
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, after the search procedure, it is seen that the optimal value of 
[image: image56.wmf]*

T

 becomes 2.01. since there is still a substantial difference between this approach 
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 (difference between these two checkpoints is 0.82) and also in general, the data of system’s failures in the past time is limited, therefore proposed approach is more applied because even when the number of observations is large but there is still a substantial difference between these two approaches. Hence for real situations, when sufficient data is not at hand, this approach can be more effective.

In the second numerical example, it is assumed that time to failure has an increasing hazard rate.  It is assumed that time to failure follows a weibull distribution with parameters
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 and
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.  The values of 
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  has been generated from the standard beta distribution with parameter c=2 and d=1 and the values of 
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have been generated from an exponential distribution with mean 1. Generated data has been shown in Table 2.

Also in this case by a search procedure, we could find 
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 as an optimal solution (the value of objective function is 3.96) but with traditional approach (traditional (S-R)-based PM), the value of objective function is 4.58 where 
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, in the other words, Bayesian approach causes tighter intervals of inspection (0.41 difference between the checkpoints of these two approaches) that causes less average cost and it means that  Bayesian inference makes the decisions more realistic and applied.

2 Conclusion

In this research, Bayesian inference is applied to determine the checkpoint of PM. since the results of the proposed method and traditional (S-R)-based PM are different, hence it is concluded  that combining Bayesian approach and traditional (S-R)-based PM can make PM approach more applicable and sensitive. By considering the past performance of machine in the proposed method, decisions will be more confident. Also in numerical example, it has been shown that, however, data in Table 1 comes from an exponential distribution but results from traditional (S-R)-based PM and proposed approach are substantially different and also when data comes from a weibull distribution with increasing hazard rate (Table 2), checkpoints of Bayesian inference are substantially different from traditional (S-R)-based PM.   
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