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	ABSTRACT


In this research the sensitivity analysis of the geometric parameters such as: length, thickness and width of a single link flexible manipulator on maximum deflection (MD) of the end effector and vibration energy (VE) of that point are conducted. The equation of motion of the system is developed based on Gibbs-Appel (G-A) formulation. Also for modeling the elastic property of the system the assumption of assumed modes method (AMM) is applied. In this study, two theories are used to obtain the end-point MD and VE of the end effector. Firstly, the assumption of Timoshenko beam theory (TBT) has been applied to consider the effects of shear and rotational inertia. After that, Euler-Bernoulli beam theory (EBBT) is used. Then Sobol’s sensitivity analysis method is applied to determine how VE and end-point MD is influenced by those geometric parameters. At the end of the research, results of two mentioned theories are compared.
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1. Introduction
Robotic manipulators are widely used in industries. Most of existing robotic manipulators are built in a rigid body to minimize the vibration of the end-effector to achieve the acceptable accuracy. This achieved by using the heavy materials and massive design. Hence, it is shown that, the rigid manipulators are inefficient in terms of power consumption or speed. So it is very desirable to build the flexible robotic manipulators to reduce the weight of the arms to increase their speed of operation. Due to this, understanding and analyzing of flexible manipulations has concerned researchers for many years [1-3], and proper modeling helps to the understanding of the process. 
              SA is fundamental tool in the building, use and understanding of mathematical models of all forms [4]. SA may be used here to specify the model resemblance with the factors that mostly take apart in the output variability [5-6]. SA has been used extensively in other sciences to analyze models [7-9], but this type of analysis has not been used widely to our knowledge for the analysis of the flexible manipulators. SA provides information regarding the behavior of the simulation model being evaluated. The SA results will be very important for adjusting the dimensions of the flexible link for selecting the appropriate link, to achieve optimum design.



 So, it is reasonable to use SA as a reliable tool to determine the effect of each parameter while the others also changing.
              Generally two groups of SA are recognized [10]: local SA and global SA. The global SA is used to study the effect of random input variables on the response variability of a computer code [11]. Currently global SA techniques are used in most of studies instead of local SA [12-14]. A commonly used method in global SA is the method of Sobol’, [15-17]. The Sobol indices [8] are commonly used to distinguish the contribution of each input variables in the response variance decomposition. As a problem definition in this research, dynamics of a single link flexible manipulator is simulated and sensitivity analysis of all geometric parameters of a dynamic model during the manipulation have been developed to achieve how each parameter is influenced on vibrations and deflections of the end-effector. In this case dynamic model of system is developed based on Gibbs-Appel (G-A) formulation and Assumed Mode Methods (AMM). Then VE and MD of the end-effector of the flexible link is achieved by using both TBT and EBBT theories. After that, Sobol’s sensitivity analysis method is used to evaluate how VE and end-point MD is influenced by geometric parameters. At the end of this paper, results of two mentioned theories are compared.
2. Kinematics of the Single-Link Elastic Robotic Manipulator


The single-link elastic manipulator system considered in this research is shown in Fig. 1, where  and  represent the stationary and moving coordinate’s frames, respectively. 

[image: ]
Fig. 1. Single link flexible robotic manipulator




The position vector of differential element  with respect to the base reference system  is shown by . To incorporate the deflection of the link, the approach of modal analysis is used. So,  can be expressed as,
	

	(1)











where  is the position vector of differential element  with respect to( when the flexible link is undeformed); and ,  and  are small displacements along the ,  and axes, respectively. The assumed mode method approach is used to determine these small displacements as,
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Where  is the eigen function vector whose components ,  and  are -th longitudinal and transverse mode shapes of the link;  is the -th time dependent modal generalized coordinate of the link; and  is the number of modes used to express the deflection of the link. The centerline’s total transverse displacement of differential element  is due to bending and shear. So the total slopes of the deflected centerline about  and  axes due to the bending and shear deformation can be represented as,
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where  and  are the slope of the deflected centerline due to shear and ,  are the slope of the deflected centerline due to bending. Since the shear has not any effects on rotating the differential element  so, this differential element undertakes rotations only due to bending and torsion. Hence the rotation of this element around the ,  and axes can be considered as ,  and , respectively. The truncated modal expansion of these small angles can be represented as,
	

	(5)










where  is the eigen function vector whose components ,  and  are -th rotational mode shapes of the link about ,  and axes, respectively.
3. The System Gibbs Function and its Derivatives

In this section the acceleration energy of the system and its derivatives are developed to construct the (G-A) formulation with respect to quasi-accelerations. Considering the assumption of (TBT), the acceleration energy of a differential element  can be represented as follows,
	

	(6)







Though, with the assumption of (EBBT) only the first term of Eq. (6) should be preserved. Also  and  are mass per unit length and mass moment of inertia per unit length, respectively.  and  are linear and angular acceleration of differential element that can be stated as, 
	

	(7)

	

	(8)








Note that, in above expressions,  and  are angular velocity and angular acceleration of the link, respectively. Also the velocity and the acceleration of differential element Q with respect to the origin of the local reference system are shown by  and , respectively. Inserting Eq. (7) and Eq. (8) into Eq. (6) and integrating over the link from  to , the total acceleration energy of the link will be obtained as,
	

	(9)







Where  is the skew-symmetric tensor associated with  vector. Also there is a term named as “irrelevant terms”. Taking the partial derivatives of Gibbs’ function with respect to quasi accelerations, motion equation with (G-A) formulation will be constructed. So, all the terms in Gibbs’ function that do not contain  and  can be ignored. The variables appeared in Eq. (9) can be computed as,
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where
	

	


	

	


	

	


	

	


	

	(17-25)






where  and  are skew-symmetric tensor associated with  and  vectors. As mentioned above, one part of dynamic equations of the system using (G-A) formulation will be obtained by differentiating of Gibbs’ function with respect to quasi-accelerations. So, these two terms can be represented as,
	

	(26)

	

	(27)


4. The System’s Potential Energy and Its Derivatives


The system’s potential energy arises from two sources, first potential energy due to gravity and second potential energy due to the elastic deformations. The potential energy due to the gravity can be considered simply by substituting , where  is the acceleration of gravity.
To represent the strain potential energy stored in flexible link, two theories are existed; (TBT) and (EBBT). For the first assumption the strain potential energy will be represented in terms of deflections and rotations as,
	

	(28)


















But for the second assumption, the first term of the above integral will be eliminated. In Eq. (28),  and  are elasticity and shear modulus, respectively;  is the polar area moment of inertia about  axis;    and  are the area moment of inertia about  and  axes, respectively;  is the cross section area of the link and  is shear correction factor. As noted in previous Section the small angles , ,  and small displacements , ,  can be represented with a truncated modal approximation. By substituting these expressions in Eq. (28) the strain potential energy of the link will be obtained as,
	

	          (29)


where
	

	(30)


To derive the motion equation of the elastic robotic manipulators, the partial derivatives of strain potential energy with respect to generalized coordinates are needed. So, these two terms can be represented as,
	

	(31)

	

	(32)


5. Dynamic Equations of Flexible Link Manipulator

Motion equation of elastic robotic manipulators will be completed by considering the generalized forces which are caused by the remaining external force terms. Let us assume that there is no external load on the links of the considered robotic manipulator. So, the generalized forces in the deflection equations will be zero. The generalized force in the joint equations is the torque  that applies to the joint. With this assumption, the dynamic equations of motion in the (G-A) formulation will be completed as follows,
· The joint equations of motion

	

	(33)


· The deflection equations of motion
	

	

	(34)



6. Sobol’s sensitivity analysis method
Sobol’s sensitivity analysis is one of the well-known statistical methods that is used successfully to non-linear mathematical models. Gloda et al., [18] showed that, it can be used efficiently for model based analysis of real-world rough-terrain robotic systems. To explain Sobol’s method, the input factors region should be defined as follows,
	

	(35)





where  is input factors vector, that are perpendicular to each other’s. The main idea behind the Sobol’s method is that, the function  is derived from the sum of the following functions;
	

	(36)


The first term of the above equation is determined as,
	

	(37)


Sobol showed that, the decomposition of Eq. (36) is unique and that all the terms can be computed via multidimensional integrals,
	

	(38)
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where  represent integration over all variables except and , respectively. Hence, for higher-order terms, continuous formula can be obtained. In the sensitivity indices which is based on variance, total variance of   is expressed to be,
	

	(40)



After squaring and integrating Eq. (36) over all variables, expression  is simplified as follow,
	

	(41)



So the sensitivity measures , are given by,
	

	

	(42)


The total sensitivity analysis index is obtained by adding all the sensitivity indices involving the factor in Eq. (42). In the proposed method, Sobol’s sensitivity analysis is applied to evaluate the optimal value of dimensions of the flexible link with respect to the vibration energy (VE) and end-effector’s maximum deflection (MD) minimization.
6.1. Sensitivity Analysis of VE using TBT and EBBT
In this section both TBT and EBBT assumptions are used to achieve VE of the single link flexible manipulator for each application. The assumption of TBT has been applied to include the effects of shear and rotational inertia. To do this, the variation intervals of each parameter should be extracted, firstly. Table.1, presents those intervals. Then, Sobol’s sampling method is applied to generate 1152 uniform random numbers on intervals presented in table1. Using the approach discussed in the previous section the VE of the flexible link is obtained with respect to each extracted random number. The results of the SA of the flexible link with respect to TBT and EBBT are shown in table.2. Also, the Pie chart diagrams of the sensitivity analysis of the VE of the elastic link using TBT and EBBT are illustrated in figs. 2 and 3, respectively.
Table. 1. properties of the link.
	Parameter
	Specifications
	Unit

	Material
	Aluminum
	-

	Density(ρ)
	2700
	


	Young module (E)
	70
	


	Length
	(20 , 140)
	


	Thickness 
	(0.1 , 0.2)
	


	Width
	(4 , 7)
	




Table. 2. The SA results of VE using TBT and EBBT.
	Sensitivity Indices
	Values(TBT)
	Values(EBBT)

	SL
	0.1195
	0.119211

	ST
	0.1004
	0.100412

	SW
	0.0074
	0.00741

	SLT
	0.8359
	0.836077

	SLW
	0.7515
	0.7508

	STW
	0.9379
	0.9369
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	Fig. 2. Pie chart diagram of SA using TBT
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	Fig. 3. Pie chart diagram of SA using EBBT



Although, according to the figs.2 and 3, it is understood that the SA results of both TBT and EBBT assumptions are the same, but in fact, they are different as noted in table.2. As shown in fig.2 and 3, among the first sensitive indices, the most percentage of the sensitivity corresponds to the length which is shown by SL.
To clarify the relation of VE corresponds to the link’s dimensions, simulations are done by applying both TBT and EBBT assumptions and finally, their results are presented in figs.4, 5 and 6. Moreover, to see the results simultaneously and compare them with each other, both results are shown in single plot.
	[image: ][image: ]

	Fig.4. Effects of the length on the VE using TBT and EBBT
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	Fig.5. Effects of the Thickness on the VE using TBT and EBBT
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	Fig.6. Effects of the Width on the VE using TBT and EBBT







The results presented in figs.4-6, show that, to decrease the VE, the flexible link with short length and high width and thickness should be used. As, it is seen in figs.4, 5 and 6, the minimum values of VE and corresponding dimensions can be obtained from Sobol’s sensitivity analysis method which is lead to appropriate determination of geometric parameters of the flexible link manipulator system. To achieve the best decision of choosing the optimum dimensions due to VE minimization, the factor of is defined. Fig.7 shows the relation between VE and , by using TBT and EBBT assumptions. According to the fig.7, the best value of  is about . Hence the dimensions of the flexible link are selected so that the factor of   is equaled to 81.
	[image: ][image: ]

	Fig.7. Effects of (l/wt) on the VE using TBT and EBBT



6.2. Sensitivity analysis of MD of the end-effector using TBT and EBBT
Like the previous sub-section, the assumptions of TBT and EBBT are used here. Maximum deflections of the end-effector correspond to those 1152 random numbers are computed. Using the Sobol’s method, the SA results of TBT and EBBT assumptions are obtained and they are presented in table.3. Also, the pie chart diagrams of the SA are illustrated in fig.8 and 9.
Table. 3. The SA results of MD using TBT and EBBT.
	Sensitivity Indices
	Values(TBT)
	Values(EBBT)

	SL
	0.3602
	0.3599

	ST
	0.2193
	0.2188

	SW
	0
	0

	SLT
	1.0175
	1.0173

	SLW
	0.7234
	0.7234

	STW
	0.7287
	0.7288
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	Fig.8. Pie chart diagram of SA using TBT
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	Fig.9. Pie chart diagram of SA using EBBT


Due to figs.8 and 9, it is understood that, the SA results of the MD of the end-effector of the elastic link by using the both TBT and EBBT assumptions are the same. But like the previous sub-section, by studying the numerical results of the SA, concluded that the results are different. As shown in fig.8 and 9, the most effective parameter between the first sensitivity indices, is SL, which shows the sensitivity amount of length on the MD of the end-effector. 
To discover how each parameter influenced on the MD of the end-effector, simulations are done and the results are presented in figs.10, 11 and 12. Each figure shows the results corresponding to the both TBT and EBBT simultaneously.
	[image: ][image: ]

	Fig.10. Effects of the Length on the MD TBT and EBBT
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	Fig.11. Effects of the Thickness on the MD using TBT and EBBT
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	Fig.12. Effects of the Width on the MD using TBT and EBBT.








Due to figs.10, 11 and 12, the MD of the end-effector is increased by the growth of length. But increasing the amount of thickness and also width are led to decrease the MD. So, like the previous sub-section, to find the optimal values of dimensions to achieve the minimum MD, the factor of is also defined here. Figs.13, shows the relation between MD and , by using TBT and EBBT assumptions. According to the fig.13, the best values of  is . As noted, the dimensions of the flexible link should be selected so that the value of  must be equal to.
	[image: ][image: ]

	Fig.13. Effects of L/WT on the MD using TBT and EBBT



7. Conclusion

In this research, dynamic modeling of the single link flexible manipulator is developed based on (G-A) formulations. AMM is used for modeling the elastic property of the system. VE and MD of the end-effector are selected to study their behavior for obtaining appropriate criteria for mechanical design of the system. For this reason, both TBT and EBBT are applied to achieve the VE and MD of the end-effector. Understanding the effects of each geometric parameter on VE and MD, SA is done by using Sobol’s method. The effects of each geometric parameter are studied. Moreover, the relation between those parameters and VE and MD are presented. The results show that, for decreasing the VE and MD, the flexible link with low length and high thickness and width should be selected. It is shown that, the most sensitive parameter corresponds to length, either TBT or EBBT. Moreover, the most percentage of sensitivity among all the other sensitivity indices is corresponded to SLT, which expresses the effects of length and thickness simultaneously. Based on the results the optimum values of VE and MD occur at 81 (1/cm) and 26 (1/cm) for , respectively.
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