جلد 23، شماره 4 - ( 8-1391 )                   جلد 23 شماره 4 صفحات 276-269 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahnam M, Fatemi Ghomi S M T. Time Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization. IJIEPR 2012; 23 (4) :269-276
URL: http://ijiepr.iust.ac.ir/article-1-462-fa.html
Time Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1391; 23 (4) :269-276

URL: http://ijiepr.iust.ac.ir/article-1-462-fa.html


چکیده:   (7845 مشاهده)

  Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly efficient and a new evolutionary computation technique inspired by birds’ flight and communication behaviors. The proposed algorithm determines the length of each interval in the universe of discourse and degree of membership values, simultaneously. Two numerical data sets are selected to illustrate the proposed method and compare the forecasting accuracy with four fuzzy time series methods. The results indicate that the proposed algorithm satisfactorily competes well with similar approaches.

     
نوع مطالعه: پژوهشي | موضوع مقاله: و موضوعات مربوط
دریافت: 1391/6/18 | انتشار: 1391/8/25

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb