جلد 25، شماره 3 - ( 4-1393 )                   جلد 25 شماره 3 صفحات 206-197 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parvaneh A, Tarokh M, Abbasimehr H. Combining data mining and group decision making in retailer segmentation based on LRFMP variables. IJIEPR 2014; 25 (3) :197-206
URL: http://ijiepr.iust.ac.ir/article-1-529-fa.html
Combining data mining and group decision making in retailer segmentation based on LRFMP variables. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1393; 25 (3) :197-206

URL: http://ijiepr.iust.ac.ir/article-1-529-fa.html


چکیده:   (8043 مشاهده)
Data mining is a powerful tool for firms to extract knowledge from their customers’ transaction data. One of the useful applications of data mining is segmentation. Segmentation is an effective tool for managers to make right marketing strategies for right customer segments. In this study we have segmented retailers of a hygienic manufacture. Nowadays all manufactures do understand that for staying in the competitive market, they should set up an effective relationship with their retailers. We have proposed a LRFMP (relationship Length, Recency, Frequency, Monetary, and Potential) model for retailer segmentation. Ten retailer clusters have been obtained by applying K-means algorithm with K-optimum according Davies-Bouldin index on LRFMP variables. We have analyzed obtained clusters by weighted sum of LRFMP values, which the weight of each variable calculated by Analytic Hierarchy Process (AHP) technique. In addition we have analyzed each cluster in order to formulate segment-specific marketing actions for retailers. The results of this research can help marketing managers to gain deep insights about retailers.
     
نوع مطالعه: پژوهشي | موضوع مقاله: و موضوعات مربوط
دریافت: 1392/3/5 | پذیرش: 1393/2/17 | انتشار: 1393/5/1

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb