
International Journal of Industrial Engineering & Production Research (2019) 30: 341-352 
DOI: 10.22068/ijiepr.30.3.341 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                          

 
 
On Attributes of Objects in Object-Oriented Software Analysis 
 
Hassan Rashidi1* & Fereshteh Azadi Parand2 
 
Received 24 December 2018; Revised 07 August 2019; Accepted 13 August 2019; Published online 16 September 2019  
© Iran University of Science and Technology 2019 
 
ABSTRACT 
One of the modern paradigms to develop software is object-oriented analysis and design. In this 
paradigm, there are several objects in the software, and each object plays some specific roles. There is 
a sequence of activities to develop an analysis model. In the first step, this study works to develop an 
initial use case model. Then, in the second step, a number of concepts are identified, and a glossary of 
participating objects is built. Identifying attributes of objects (and classes) is one of the most important 
steps in the object-oriented paradigm. This paper proposes a method to identify the attributes of 
objects and verify them. The method is also concerned with classifying and eliminating the incorrect 
attributes of objects. Then, the method is evaluated through a large application, a Control Command 
Police System. After that, several guidelines concerning attributes of objects based on the practical 
experience obtained from the evaluation are provided. 
 
KEYWORDS: Object-Oriented, Analysis Model, Object, Attributes, Use Case. 
 

1. Introduction1 
One of the modern paradigms of developing 
software is Object-Orientation (OO). In this 
paradigm, our world is defined using the object 
categories (classes) or object types (pure abstract 
class or Java interface) 
(see  [10],  [12],  [13],  [16],  [17],  [23]). Every 
class/object in the software plays a specific role, 
each of which is programmed in Object-Oriented 
languages such as C++ and Java. A number of 
attributes (data variables) and services 
(operations/functions/methods) are assigned to 
these classes. Then, the behavior of the software 
is modeled as a sequence of messages that are 
sent between various objects. In OO models, a 
number of relationships such as inheritance, 
association, and aggregation (see  [10],  [17],  [24]) 
are identified between the classes/objects. 
Moreover, there are many popular design 
modeling processes and guidelines such as 
GRASP  [21] and ICONIX  [20] for assigning 
responsibility to classes and objects in an object-
oriented design.  
Figure 1 depicts a typical sequence of activities to 

                                                   
Corresponding author: Hassan Rashidi 

*

  hrashi@atu.ac.ir 
 
1. Department of Mathematics and Computer Science, Allameh 

Tabataba’i University 
2. Department of Mathematics and Computer Science, Allameh 

Tabataba’i University. 

develop an analysis model. In the first step, the 
users, developers, and client are involved in 
developing an initial use case model. These 
activities occur in a tight loop until much of the 
functionality of the system has been identified as 
use cases with names and brief descriptions. 
Then, the developers construct sequence 
diagrams to identify any missing objects. When 
all entity objects have been named and briefly 
described, the analysis model should remain 
fairly stable as it is refined. 
In the second step, a number of concepts are 
identified, and a glossary of participating objects 
is built. In this step, we are not really finding out 
objects. In fact, we are actually finding categories 
and types (analysis concepts) that will be 
implemented using classes and pure abstract 
classes. The developers usually classify the 
participating objects into entity, boundary, and 
control objects  [4].  
The third step is to identify the attributes of 
objects on which we focus. In this step, we must 
work on identifying association and nontrivial 
behavior of objects. The results of the preceding 
steps include an analysis model for reviewing. (a) 
This model organizes the data into objects and 
classes and structure the data via the relationships 
of inheritance, aggregation, and association; (b) it 
specifies the local functional behaviors and 
defines their external interfaces; (c) it captures 
the control or global behavior; and (d) it captures 

RESEARCH PAPER 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                             1 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


342 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented Software 
Analysis 

 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                          

constraints (limits and rules). The interaction 
between objects helps refine the participating 
objects. We should review the model with experts 
and, sometimes, the model needs revisions, as 
shown in the figure.  
The main motivation of this paper is to survey the 
approaches for identifying attributes of objects. 
The structure of the remaining sections is as 

follows: In Section 2, the literature review in the 
steps depicted in Figure 1 is presented. In Section 
3, a method to identify and verify the attributes of 
objects is proposed. In Section 4, the practical 
experience and guidelines are presented. Finally, 
Section 5 concludes the paper along with a 
summary of the main points. 

  

 
Fig. 1. A typical sequence of the analysis activities 

 
2. Literature Review On the Steps 

Identifying use cases is one of the most important 
steps in software requirement analysis. Rashidi et 
al. (2017) conducted a literature review on use 
cases and, then, presented six taxonomies for 
them  [30]. The first taxonomy is based on the 
level of functionality of a system in a domain. 
The second taxonomy is based on the primacy of 
functionality, and the third one relies on the 
essentialness of functionality of the system. The 
fourth taxonomy is concerned with supporting 
functionality. The fifth taxonomy is based on the 
boundary of functionality, and the sixth one is 
related to generalization/specialization relation. 
Then, the use cases are evaluated in a case study 
in a control command police system. Several 
guidelines are recommended for developing use 
cases and their refinement based on some 

practical experience obtained from the 
evaluation. 
Rashidi (2015) did a literature review of 
techniques to identify objects  [23]. These 
techniques include (a) Using Nouns, (b) Using 
Traditional Data Flow Diagrams, (c) Using 
object-oriented domain analysis, (d) Reusing an 
Application Framework, (e) Reusing Class 
Hierarchies, (f) Reusing Individual Objects and 
Classes, (g) Using Generalization, (h) Using 
Subclasses, (i) Using Subassemblies, (j) Using 
Object Decomposition, (k) Using Personal 
Experience, (l) Using Class-Responsibility-
Collaboration Cards, (m) Using the definitions of 
objects and classes, and (n) Using things to be 
modeled. This research presented six taxonomies 
for these techniques. The first taxonomy is based 
on the documents existing for a domain. The 

Revie
Model

Identify 
Interactions

Identify
Associations

3-Identify
Attributes 

Identify
Nontrivial

Behavior

1- Develop 
Use Cases 

2-Identify 
Participating 

Object

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                             2 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


343 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented  
Software Analysis 
 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                         

second taxonomy is concerned with the reusable 
previous knowledge, and the third one relies on 
commonalities in a domain. The fourth taxonomy 
is based on decomposing a domain. The fifth 
taxonomy is grounded on experience view, and 
the sixth one is related to using abstraction in a 
domain. In this research, the constraints, 
strengths, and weaknesses of the techniques in 
each taxonomy are described. This research 
reviewed the techniques to find objects in object-
oriented software development and made six 
taxonomies for them. To get some experience in 
practice, the techniques were applied to four 
projects, including two system software products 
and two applications  [22]. The most important 
findings include the application of a mixture of 
the techniques and employment of the experts to 
implement and get the best software products in 
practice.  
After identifying objects, the relationships among 
objects must be identified. Rashidi (2015) did a 
review on the relationships among objects in 
object-oriented development and made five 
taxonomies for their properties  0. Mainly, the 
relationships are three basic types (inheritance, 
association, and aggregation). This research 
presented five taxonomies for properties of the 
generalization/specialization, association, and 
aggregation relationships in the software. The 
first taxonomy is concerned with a temporal 
view, and the second one is based on structure. 
The third taxonomy relies on behavioral view, 
and the fourth one is specified from a 
mathematical view. Finally, the fifth taxonomy is 
related to the interfaces between objects. 
Moreover, in this research, the relationships are 
evaluated in a case study and, then, several 
recommendations are proposed. The main 
conclusion of this research is that the 
relationships must capture some concepts that are 
applied to the problem domain or some sub-
domain.  
Bavota et al. (2014) proposed an approach for 
automating the extract class refactoring  [1]. This 
approach analyzes structural and semantic 

relationships between the methods in each class 
to identify chains of strongly related methods. 
The identified method chains are used to define 
new classes with higher cohesion than the 
original class while preserving the overall 
coupling between the new classes and the classes 
interacting with the original class. 
In an application, we must distinguish between 
the procedural semantics and declarative 
semantics for its implementation in programming 
languages. In the procedural semantics, a set of 
instructions that must be executed sequentially 
can be written, whereas the declarative semantics 
specify a set of facts and rules. These semantics 
do not specify the sequence of steps for doing the 
processing. Rashidi (2016) presented four 
taxonomies for the rules in the object-oriented 
paradigm and discussed how this paradigm could 
be extended to be used in supporting declarative 
semantic of applications  [25]. Then, the author 
evaluated the rules in the taxonomies in four case 
studies. After that, an approach was suggested for 
the determination and implementation of 
declarative semantics based on some practical 
experience obtained from the evaluation. 
 

3. The Proposed Method 
To identify the attributes of objects, it is difficult 
to decide what data are entities and what data are 
attributes. For example, in an application, should 
the ‘lock’ be an entity or attribute? There are 
arguments for and against each of these choices. 
The primary criteria for making decisions are 
whether a choice results in a more precise 
description and whether a choice unnecessarily 
constrains design decisions. Fig. 2 proposes a 
method to determine and verify the attributes of 
objects. For each object, attributes of objects 
must be identified. Then, the attributes are 
classified and the incorrect ones are eliminated. 
After that, an activity of verification of attributes 
must be performed. The outcome of this method 
is an analysis model that is given to the design 
and implementation phase. 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                             3 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


344 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented Software 
Analysis 

 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                          

 
Fig. 2. The proposed method to determine and verify the attributes of objects 

 
Everything in the real world has several 
characteristics. For example, a person can be 
described by her or his height: weight, hair color, 
eye color, and so on. Each characteristic that is 
common to all instances of the object/ class is 
abstracted as a separate attribute. For example, 
Hassan is 6' tall, weighs 175 pounds, and has red 
hair and brown eyes, while Hussein is 5'10" tall, 
weighs 160 pounds, and has black hair and green 
eyes. For a person, potential attributes are height, 
weight, hair color, and eye color. Note that the 
characteristics that are abstracted into attributes 
are highly problem-dependent. Consider the 
"person" object. 
Most of us can come up with a large number of 
characteristics for a "person" conceptually. When 
the abstraction of a person is limited to a specific 
problem domain or to a specific problem, the 
number of applicable characteristics is reduced. 
Thus, for the purposes of analysis, an attribute is 
an abstraction of a single characteristic that is 
applicable to the business domain and is 
possessed by all of the entities that were 

themselves abstracted as objects. From a 
technical perspective, an attribute is a variable 
(data item or state information) for which each 
object (instance) has its own value. Each attribute 
must be provided with a name that is unique 
within the object/class. Because each attribute 
may take on values, the range of legal values 
allowed for an attribute should also be captured. 

 
3-1. Approaches to identifying attributes 
To identify the attributes of objects, the key issue 
is the following questions: what data do we 
believe the object is responsible for knowing and 
owning? The following questions must be asked 
about each potential object: (1) How is an object 
described in general? (2) What parts of the 
general description are applicable to this problem 
domain? and (3) What is the minimal description 
needed for this application? 
The first approach is to take the Eastern or 
Taoist approach. In this approach, analysts take 
a view on object-oriented analysis such that they 
will design the system by asking only the first 

Design and 
Implementation 

4-Verify 
Attributes 

3-Eliminate Incorrect 
Attributes 

1-Identify 
Attributes 

2-Classify 
Attributes 

Objects 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                             4 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


345 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented  
Software Analysis 
 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                         

two questions. Analysts will not be concerned 
with the specific application that they are 
implementing. We have found that, with this 
approach, there is a tendency to produce a more 
flexible and robust model from a business 
perspective. Analysts will then be able to respond 
to changes in the marketplace more quickly. This 
flexibility is usually at the expense of 
performance and space utilization. If you are 
trying to produce flexible and reusable software, 
you should apply an Eastern or Taoist philosophy 
to problem-solving and object-oriented modeling. 
The second approach is to take the Western 
approach. In this approach, analysts ask all of 
the three questions and look only at the present 
application so that they tend to produce a fine-
tuned, high-performance system with good space 
utilization that makes more effective use of the 
hardware. However, it will be at the expense of 
having less reusable classes/objects and having 
less flexibility to respond to the marketplace. In 
Eastern philosophy, we would not be asking 
Question (3). We expect that the proper modeling 
of the problem domain would automatically 
contain our business solution to our application. 
This kind of philosophy is based on 
experimentation versus our classical Western 
thinking, which is based on planning. 
To aid the analyst in determining the attributes of 
objects, a Heuristic approach, to begin with, 
uses the adjectives and possessive phrases in the 
requirements document. In particular, a noun 
phrase followed by a possessive phrase or an 
adjective phrase should be examined. Then, after 
identifying a few attributes, the analyst should 
ask three questions to identify more attributes. In 
the case of entity objects, any belongings that 
must be stored by the system can be a candidate 
attribute, e.g., red car, the 40-year-old man, the 
color of the truck, and the position of the cursor. 
Attributes of objects can be identified using the 
heuristic rules as follows: ( [4],  [15],  [10]): 

 Scan the possessive phrases in the 
analysis document. 

• Represent the stored state as an attribute 
of the entity object. 

• Describe each attribute. 
• Do not represent an attribute as an object; 

use an association instead. 
• Do not spend time describing fine details 

before the object structure is stable. 
 

3-2. Classification of attributes 
According to some research on object-oriented 
analysis, there are usually four types of attributes 

( [2],  [7],  [10]): (a) descriptive, (b) naming, (c) 
state information, and (d) referential: 

• Descriptive Attributes: Descriptive 
attributes are facts that are intrinsic to 
each entity. If the value of a descriptive 
attribute changes, it only means that 
some aspects of an entity (instance) have 
changed. From a problem-domain 
perspective, it is still the same entity. For 
example, if Hassan gains one pound, 
from nearly all problem-domain 
perspectives, Hassan is still a person. 
More importantly, Hassan is still the 
same person as before when he gained 
one pound. 

• Naming Attributes: These are used to 
name or label an entity/object. Typically, 
they are somewhat arbitrary and 
frequently used as identifiers or as part of 
an identifier. If the value of a naming 
attribute changes, it only means that a 
new name has been given to the same 
entity/object. In fact, naming attributes 
do not have to be unique. For example, if 
Hassan changes his name to Ali, all that 
changes; yet, his weight, height, etc. are 
still the same. 

• State-Information Attributes: They are 
used to keep a history of the entity. These 
are usually needed to capture the states of 
the finite state machines used to 
implement the dynamic aspect of the 
behavior of objects. For example, the 
attribute ‘speed’ of a “Car” is used to 
control the different states of the object. 
The State-Information attributes are 
important to build simulation 
software  [26]. 

• Referential-Information Attributes: 
They are some facts that connect one 
object to another so as to capture 
relationships. For example, assume that 
“Driver” and “Car” object. Then, we can 
define the attribute ‘driver’ for “Car” 
object.  

 
Coad and Yourdon (1991) put it very well when 
they said  [5]: "Make each attribute capture an 
atomic concept". The atomic concept means that 
an attribute will contain a single value or a 
tightly-related grouping of values that some 
applications treat as a whole. In this respect, 
attributes of objects are divided into individual 
attributes and composite attributes:  

 Single-Value Attribute: They are 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                             5 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


346 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented Software 
Analysis 

 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                          

individual attributes such as ‘age’, 
‘salary’, and ‘weight’ of an object 
“Person”. 

 Group-Values Attribute: They are 
composite data items such as legal 
‘name’, ‘address’, and ‘birth date’ for an 
object “Person”. 

Some attributes of an object are dependent on 
other attributes. In fact, the attributes can be 
calculated from other attributes and are generally 
used to increase the performance of an 
application. In this aspect, attributes can be 
classified into the following categories:  

 Basic Attribute: It is a simple attribute 
that adheres to an object such as 
‘birthday’, ‘salary’, and ‘weight’ of a 
“Person”. 

 Performance Attribute: It is calculable 
based on the basic attributes such as 
‘age’ that can be calculated from the 
current year and the ‘birthday’ of the 
object “Person”. 

 
3-3. Eliminating incorrect attributes 
Attributes are rarely fully described in a 
requirements document. Fortunately, they seldom 
affect the basic structure of the model of object-
orientation. Analysts must draw upon their 
knowledge of the application domain and the real 
world to find them. Because most guidelines for 
identifying attributes do not help differentiate 
between incorrect attributes and real attributes, 
the following suggestions help eliminate 
incorrect attributes ( [8], [9],  [15] ): 

 Objects: If the independent existence of 
the attribute is more important than its 
value, then the attribute is an object and 
there needs to be a link to it. For 
example, consider a “Person” object, an 
instance of the class person, in an 
application of Staff Administration. The 
‘address’ or ‘city’ in which the Person 
lives is an attribute. In this application, if 
analysts do not manipulate the ‘address’ 
without knowing to which person the 
address belongs, then it is an attribute. 
However, if analysts manipulate the 
‘address’ as an entity itself, like Military 
Service application, then the ‘address’ or 
‘city’ should be an object with a link 
between it and Person. 

 Qualifiers: If the value of an attribute 
depends on a particular context such as 
Sport or Police, then we must consider it 
as a qualifier. For example, the 

badgeNumber of Player/Police is not 
really his/her attribute. It really qualifies 
as a link "plays/works" between the 
object Player/Police and the object 
Club/Police-Center.  

 Names: It is noted that a name is an 
attribute when it does not depend on the 
context. For example, a ‘person’ name is 
an attribute of “Person”. Note that an 
attribute, as in a person's name, does not 
have to be unique. However, names are 
usually qualifiers and not attributes. They 
usually either define a role in an 
association or define a subclass or 
superclass abstraction. For example, 
‘parent’ and ‘teacher’ are not attributes of 
the object “Person”. Both are probably 
roles for associations. Another example 
is a male person and a female person. 
There are two ways to capture this: we 
must (a) consider ‘gender’ as an attribute 
of the object “Person” or (b) make two 
subclasses. 

 Identifiers: We must not prepare a list of 
the unique identifiers that object-oriented 
languages need for making an 
unambiguous reference to an object. This 
is implicitly assumed to be part of the 
model; however, the application domain 
identifiers are listed. For example, in 
most accounting applications, an 
‘account code’ is an attribute of an object 
“Account”, whereas a transaction 
identifier is probably not an attribute of 
the “Account”. 

 Link attributes: If an attribute of an 
object depends on the presence of a link, 
then it is an attribute of the link and not 
of the objects in the link. We must 
consider the link as an associative object 
and make the proposed attribute as one of 
its attributes. For example, assume that 
Ali is married to Maryam. The date of 
their marriage is an attribute of the 
“is_married” association and not an 
attribute of Ali or Maryam. 

 Discordant: We must omit minor 
attributes that do not affect the methods. 
For example, in the application of student 
registration in university, the number of 
brothers/sister of a student must be 
removed from the list of attributes of the 
student. 

 
 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                             6 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


347 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented  
Software Analysis 
 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                         

3-4. Verify attributes 
During the development of an analysis model, 
these are some issues concerning normalization 
and performance. These issues should be left to 
the design and implementation phase. However, 
the type of data such as Character, Integer, 
String, or Boolean should be specified. Its range, 
constraints, and invariants should also be 
captured. We recommend capturing constraints 
and invariants using declarative semantics 
as  [25]. Because verifying attributes is difficult, 
the studies in the References ( [10],  [16]) offered 
several rules to which an attribute must adhere:  

 Rule-1: An attribute must capture a 
characteristic that is consistent with the 
semantic domain in which an object 
resides. For instance, consider the object 
"Programmer" in an application of 
software management. The property of 
the programmer is the number of years of 
experience in writing computer 
programs. However, ‘age’ is probably 
not an attribute of "Programmer"; it is 
probably an attribute of "Person", which 
is a different object from "Programmer". 
We know that all programmers are also 
people, then we can create a "Human 
Programmer" object by having it inherit 
the programmer's attributes (e.g., ‘years 
of writing computer programs’) from the 
"Programmer" object and the human 
attributes (e.g., ‘age’) from the "Person" 
object. Thus, it must be noted that a 
"Human Programmer" is not a composite 
of two objects. 

 Rule-2: An instance/object has exactly 
one value (within its range) for each 
attribute at any given time. For example, 
in the application of medical 
administration, eye color is chosen as an 
attribute of the Person object with a 
range of colors such as black, brown, 
blue, and green. If it is discovered that a 
person, Mohammad, which should be an 
instance of Person, has one green eye and 
one brown eye, then both green and 
brown cannot be assigned as the eye 
color of Mohammad. 

 Rule-3: An attribute must not contain an 
internal structure. For example, if 
“name” is considered as an attribute of 
“Person”, then we are not interested in 
manipulating the given ‘name’ and the 
‘family name’ independently in the 
problem domain. 

 Rule-4: An attribute must be a 
characteristic of the entire entity and not 
a characteristic of its composite parts. 
For example, if "computer" is specified 
as an object that is composed of a 
“terminal”, “keyboard”, “mouse”, and 
“CPU”, the size of the screen is an 
attribute of “monitor” and not 
“computer”. 

 Rule-5: When an object is an abstraction 
of a concept that interacts with other 
objects, the attribute of the object must 
be associated with the concept and not 
the other objects. For example, in the 
application of corn transportation, 
assume that we want to transfer corn 
from a “Primary Depot” to a “Second 
Depot” and define an “Intermediate 
Truck” for transferring. Then, if the 
capacity of the “Intermediate Truck” is 
indicated with the attribute ‘number of 
tons’, it must represent the number of 
transferred tons. It may not be used to 
represent the number of tons in the 
“Primary Deport” or in the “Second 
Depot”. 

 Rule-6: When an object/class has a 
relationship with another object/class, 
especially an object/class of the same 
kind, the attribute must capture the 
characteristics of the object/class, not the 
relationship or the other 
object(s)/class(es) in the relationship. For 
example, if salary is added as an attribute 
and spousal relationship to “Person”, the 
spouse's pay cannot be used as the value 
for the salary attribute of a nonworking 
spouse, and the date of their marriage is 
not an attribute of either spouse. 

 
4. Experimental Results 

In order to make specific guidelines for 
developing an analysis model according to which 
attributes of classes/objects must be identified 
and verified, this paper used a Control Command 
Police System (CCPS). For this system, there is a 
brief description with a mini-requirement in  [17]. 
This system is extended in  [14]; then, it is used in 
our study due to its reusability and fertility in 
both application and system software. This 
system must respond as quickly as possible to 
report incidents. Its objectives are to make sure 
that all incidents are logged and routed to the 
most appropriate police vehicle. The most 
important factors concerning which vehicle to 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                             7 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


348 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented Software 
Analysis 

 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                          

choose or assign to an incident include the 
following: 

 Type of incident: Some critical events 
need an immediate response. It is suggested 
that some specific categories of response 
actions are assigned to a definite type of 
incident. 

 Location of available vehicles: Generally, 
the best strategy is to send the closest 
vehicle to the accident to address the 
problem. We must keep in mind that it is 
not possible to know the exact position of 
the vehicles and may need to send a 
message to the car to determine its current 
location. 

 Type of available vehicles: Some 
incidents need vehicles and some special 
incidents such as traffic accidents may need 
ambulance and vehicles with specific 
equipment. 

 Location of incident: In some specific 
areas, sending only one vehicle for a 
response action is enough. In other areas, 
maybe a police vehicle to respond to the 
same type of accident is enough.  

 Other emergency services such as 
firefighter and ambulance: The system 
must spontaneously alert the needs to these 
services. 

 Reporting details: The system should 
record details of each incident and make 
them available for any information 
required. 

 
The Class Diagram of this system is depicted in 
Fig. 3. In this diagram, there are many classes. 
The main classes, here, include ‘Incident’, 
‘Police Staff’, ‘Police Vehicle’, ‘Police Officer’, 
‘Director’, ‘Route Manager’, ‘Incident Waiting 
List’, ‘Response’, and ‘GPS Receiver’. 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                             8 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


349 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented  
Software Analysis 
 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                         

 
Fig. 3. The class diagram of the control command police system 

 
We applied the steps defined in Section 3 with a 
view that attributes are properties of individual 
objects. For example, an “Incident” object, as 
described in  [14], has a ‘Type’, a ‘Location’, and 
a ‘Description’ property (see Figure 3). These are 
entered by the “Call Taker” object when she 
reports an incident and are subsequently tracked 

by the system. Based on the experiences in our 
study, some guidelines are presented as follows: 

• Guidline-1: We should verify that the 
attribute adheres to all of the rules suggested 
in Section 3-4 and that a group the attributes 
is in the same semantic domain to provide a 
good cohesion in the model. A class should 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                             9 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


350 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented Software 
Analysis 

 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                          

be coherent and simple. It must represent a 
concept that operates in a single semantic 
domain. 

• GuidLine-2: We should eliminate attributes 
that are calculable or derivable from the 
basic attributes. These attributes are usually 
related to address normalization, object 
identification or performance of overall 
supplication, which could be eliminated 
during the analysis step. We must note that 
some attributes are related to using the 
resources efficiently inside the application 
such as “PoliceVehicle” in the CCPS. The 
attributes of these resources must be 
identified during the analysis step.  

• GuidLine-3: When identifying properties of 
classes/objects, only the attributes relevant 
to the system should be considered. For 
example, each “PoliceStaff” has a social 
security number that is not relevant to the 
CCPS. Instead, “PoliceStaff” is identified by 
‘Name’, ‘Surname’, and ‘Id” which are 
represented as badge number property. 

• GuidLine-4: When an attribute of an object 
seems completely unrelated to all other 
attributes, it may indicate that the object 
may need to be split into two or more 
objects. For example, the attribute ‘status’ in 
the CCPS must be considered for the 
“Incident” and “PoliceVehicle” objects. 

• GuidLine-5: Properties that are represented 
by objects are not attributes. For example, in 
the CCPS, every “Incident” has a reporter 
that is represented by an association to the 
“CallTaker” class.  

• GuidLine-6: Analysts should identify as 
many associations as possible before 
identifying attributes to avoid confusing 
attributes and objects. Attributes that related 
to States-Information and Referential-
Information, as described in Section 3-2, are 
implementation issues.  

• GuidLine-7: Each attribute must have (a) 
Name, (b) Type, and (C) Description. 

• GuidLine-8: When we are identifying an 
attribute of the object with a specific Name, 
we must not confuse it with other names 
used in the domain. For example, in the 
CCPS, the “IncidentReport” has several 
attributes, a couple of which are called 
‘Incident_Type’ and ‘Mission’. The 
‘Incident_Type’ describes the kind of report 
being filed (e.g., initial report, request for a 
resource, and final report). The mission 
describes the type of emergency service 

(e.g., fire, traffic, etc.) that must be taken 
care of. To avoid confusion, these attributes 
should not both be called type. 

• GuidLine-9: Each attribute must have a 
Type that describes the legal values it can 
take. For example, in the CCPS, the 
‘Description’ attribute of an “Incident” is a 
string. The Type attribute of “Incident” is an 
enumeration that can take one of three 
values: fire, traffic, etc. Attribute types are 
based on predefined basic types in UML. 

• GuidLine-10: Each attribute must have a 
Description. It must not be confused with 
the other attributes of objects. For example, 
in the CCPS, the ‘Description’ attribute of 
an “Incident” is a String, which must not be 
confused with the description of each 
attribute. 

 
5. Summary and Conclusion 

This paper reviewed the steps of making an 
analysis model in object-oriented software 
development. Additionally, it proposed a method 
to identify attributes of objects and verify them. 
The method is also concerned with classifying 
and eliminating the incorrect attributes of objects. 
Then, the method was evaluated through an 
application, Control Command Police System. 
Several guidelines for finding attributes of 
objects based on some practical experience 
obtained from the evaluation were provided. 
Sometimes, attributes were discovered or added 
late when a prototype of a system was developed 
and evaluated by the users. Unless the added 
attributes were associated with additional 
functionality in the application, the added 
attributes did not entail major changes in the 
object and application structure. The most 
important point is that a class must be coherent 
and simple so that it can represent a concept that 
operates in a single semantic domain. The 
developers do not need to spend excessive 
resources in identifying and detailing attributes 
that represent fewer important aspects of the 
system. These attributes can be added later after 
the analysis model, and the user interfaces are 
validated. 
 

References 
[1] Bavota G, Lucia A De, Marcus A, 

Oliveto R, "Automating extract class 
refactoring: an improved method and its 
evaluation", Empir Software 
Engineering, Vol. 19, (2014), PP. 1616-
1664.  

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                            10 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


351 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented  
Software Analysis 
 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                         

[2] Beck K. and Cunningham W., "A 
laboratory for teaching object oriented 
thinking", OOPSLA '89 Conference 
proceedings on Object-oriented 
programming systems, languages and 
applications, ACM SIGPLAN Notices, 
(1989). 

 
[3] Booch, G., J. Rumbaugh, and I. 

Jacobson. The Unified Software 
Development Process, Addison- Wesley, 
(1998). 

 
[4] Bruegge B. and Dutoit A. H., “Object-

Oriented Software Engineering: Using 
UML, Patterns, and Java”, Pearson 
Prentice Hall, (2010). 

 
[5] Coad P. and Yourdon E., "Object-

Oriented Analysis", Yourdon Press, 
(1991). 

 
[6] Deursen A. V, Kuipers T., "Identifying 

Objects Using Cluster and Concept 
Analysis", Proc. of 21st International 
Conference on Software Engineering, 
Los Angeles, CA, ACM Press, New 
York, (1999), PP. 246-255.  

 
[7] Fokaefs M., Tsantalis N., Strouliaa E., 

Chatzigeorgioub A., “Identification and 
Application of Extract Class Refactoring 
in Object-Oriented Systems “, Journal of 
Systems and Software, Vol. 85, (2012), 
PP. 2241-2260.  

 
[8] Gurp J.V and Bosch J., “Design, 

Implementation and Evolution of Object-
Oriented Frameworks: Concepts and 
Guidelines”, Software-Practice and 
Experience, Vol. 31, (2001), PP. 277-
300.  

 
[9] Langer M., "Analysis and Design of 

Information Systems", 3rd Edition, 
Springer-Verlag London Limited, (2008). 

 
[10] Lee R.C and Tepfenhart W.M., "UML 

and C++: A Practical Guide to Object-
Oriented Development", 2ndEdition, 
Pearson Prentice Hall, (2005). 

 
[11] Martin, J. and J. Odell, Object-Oriented 

Analysis and Design, Prentice-Hall, 
(1992). 

 
[12] PfleegerS.h., Atlee J.M., "Software 

Engineering: Theory and Practice”, 4th 
Edition, Pearson, (2010). 

 
[13] Pressman R. S., “Software Engineering: 

A Practitioner's Approach”, 8th Edition, 
McGraw-Hill, (2014). 

 
[14] Rashidi H., “Software Engineering-A 

programming approach”, 2nd Edition, 
Allameh Tabataba’i University Press (in 
Persian), Iran, (2014). 

 
[15] Rumbaugh, J. "Getting Started: Using 

Use Cases To Capture Requirements”, 
Object-Oriented Programming, Vol. 7, 
No. 5, (1994), PP. 8-12.  

 
[16] Schlaer, S., and S. Melior, "Object-

Oriented Systems Analysis: Modeling the 
World in Data", Yourdon Press, (1988). 

 
[17] Sommerville Y., “Software Engineering”, 

10th Edition, Pearson Education, (2018). 
 
[18] Subhash K.S, Bhojane V., Mahajan P., 

“NLP based Object-Oriented Analysis 
and Design from Requirement 
Specification”, International Journal of 
Computer Applications, Vol. 47, No. 21, 
(2012). 

 
[19] Yourdon, E. N. and Constatine L. 

L.,“Structured Design: Fundamentals of a 
Discipline of Computer Program and 
Systems Design”, Prentice-Hall, 
Englewood Cliffs, New Jersey, (1979). 

 
[20] Rosenberg D., and Stephens M., "Use 

Case Driven Object Modeling with 
UML: Theory and Practice", Apress, 
(2007). 

 
[21] Larman, C., "Applying UML and 

Patterns – An Introduction to Object-
Oriented Analysis and Design and 
Iterative Development", 3rd Edition, 
Prentice-Hall, (2005). 

 
[22] Rashidi H., “A Systematic Approach to 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

                            11 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html


352 Hassan Rashidi & Fereshteh Azadi 
Parand 

On Attributes of Objects in Object-Oriented Software 
Analysis 

 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, No. 3                          

Financial Planning in Firms and Its 
Implementation in an Enterprise”, 
Quarterly Journal of Fiscal and Economic 
Policies, Vol. 2, No. 8, (2014), PP. 73-92. 

 
[23] Rashidi H., “Objects Identification in 

Object-Oriented Software Development - 
A Taxonomy and Survey on 
Techniques”, Journal of Electrical and 
Computer Engineering Innovations, Vol. 
3, No. 2, (2015), pp. 27-43. 

 
[24] Rashidi H., Fundamental Concepts in 

Computers and Information Technology, 
Allameh Tabataba’i Press, (2017). 

 
[25] Rashidi H., Declarative Semantics in 

Object-Oriented Software Development - 
A Taxonomy and Survey, Journal of 
Electrical and Computer Engineering 
Innovations, Vol. 4, No. 1, (2016), PP 
57-68. 

 
[26] Rashidi H., Discrete simulation software: 

a survey on taxonomies, Journal of 
Simulation, Vol. 11, No. 2, (0217), PP 
174–184. 

 
[27] Rashidi H., Tsang E., Vehicle Scheduling 

in Port Automation, Advanced 
Algorithms for Minimum Cost Flow 

Problem (2nd Edition), Taylor and 
Forensics, (2016). 

 
[28] Asadi M., Rashidi H., A Model for 

Object-Oriented Software Maintainability 
Measurement, International Journal of 
Intelligent Systems and 
Applications(IJISA),Vol. 1, (2016), PP. 
60-66. 

 
[29] Rashidi H., Tsang E. P. K., A Complete 

and an Incomplete Algorithm for 
Automated Guided Vehicle Scheduling in 
Container Terminals, Computer and 
Mathematics with applications, Vol. 61, 
No. 3, (2011), PP. 630-641. 

 
[30] Rashidi Z., Rashidi Z., Rashidi H., Use 

Case Modeling in Software 
Development: A Survey and Taxonomy, 
Int. J. Advanced Networking and 
Applications Vol. 8, No. 5, (2017), PP. 
3188-3200. 

 
[31] Rashidi Z., “Properties of Relationships 

among objects in Object-Oriented 
Software Design,” International Journal 
of Programming Languages and 
Applications, Vol. 5, No. 4, (2015), PP. 
1-13. 

 
Follow This Article at The Following Site: 
 
Rashidi H, Parand F A. On Attributes of Objects in Object-Oriented Software 
Analysis. IJIEPR. 2019; 30 (3) :341-352 
URL: http://ijiepr.iust.ac.ir/article-1-873-en.html 

 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

1-
27

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            12 / 12

https://www.iust.ac.ir/ijieen/article-1-873-fa.html
http://www.tcpdf.org

