جلد 19، شماره 1 - ( 12-1386 )                   جلد 19 شماره 1 صفحات 32-29 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Farnoosh R, Zarpak B. ­­Image Segmentation using Gaussian Mixture Model . IJIEPR 2008; 19 (1) :29-32
URL: http://ijiepr.iust.ac.ir/article-1-19-fa.html
­­Image Segmentation using Gaussian Mixture Model . نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1386; 19 (1) :29-32

URL: http://ijiepr.iust.ac.ir/article-1-19-fa.html


چکیده:   (11622 مشاهده)

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.

  In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact, a new numerically method was introduced for finding the maximum a posterior estimation by using EM-algorithm and Gaussians mixture distribution. In this algorithm, we were made a sequence of priors, posteriors were made and then converged to a posterior probability that is called the reference posterior probability. Maximum a posterior estimated can determine by the reference posterior probability which can make labeled image. This labeled image shows our segmented image with reduced noises. We presented this method in several experiments.

     
نوع مطالعه: پژوهشي | موضوع مقاله: Material Managment
دریافت: 1388/1/31 | انتشار: 1386/12/25

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.