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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

This article develops an integrated JIT lot-splitting model for a single 

supplier and a single buyer for only one product. The relationship 

between optimal lot size and setup time reduction is an important 

subject in such problems. In this model we analyze the effect of setup 

time reduction in the integrated lot splitting strategy. Two cases, 

Single Delivery (SD) case, and Multiple Delivery (MD) case are 

investigated before and after setup time reduction. The Gradient 

Search (GS) and Particle Swarm Optimization (PSO) are used in 

proposed model to determine the optimal order quantity (Q*), optimal 

rate of setup reduction (R*), and the optimal number of deliveries 

(N*) -just for multiple deliveries case. These optimum values are 

calculated by minimizing the total cost for both buyer and supplier. 

Finally numerical example and sensitivity analysis are provided to 

compare the aggregate total cost for two cases and effectiveness of the 

considered algorithms. The results show that which policy for lot-

sizing is leading to lower total cost. Results show that the aggregate 

total cost in Single delivery policy is obtained 1.3% lower when we 

used the optimized setup time reduction rate. 
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11..  IInnttrroodduuccttiioonn


  

Joint economic lot sizing: (JELS), the problem of 

determining production and procurement quantities is 

one that has to face when the supplier and the buyer 

has agreed to cooperate in a production system 

network. Goyal [1] has considered an integrated 
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inventory model for a single product and perhaps it is 

the first contribution in this field.   

A seminal work in the area of “integrated inventory 

models” is that of Banerjee [2] who proposed the 

concept of a joint economic lot size. Also the studies of 

Goyal [3] are related to this concept. He has expanded 

this model, where a buyer’s order quantity is delivered 

by the supplier in equal several shipments, as well as 

Kim and Ha [4].  

Earlier works focused on the potential saving for both 

parties (the vendor and the buyer) simultaneously. A 

comprehensive literature review of this work is 

Joint economic lot-sizing 

(JELS), 
Setup time reduction,  

Particle swarm optimization,  

Optimal aggregate total cost
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presented in Goyal & Gupta [5], Abad [6], Parlar & 

Wang [7], Aderohunmu & others [8], Lu [9], Goyal 

[10], Hill [11], Viswanathan [12], Bylka [13], and 

Goyal & Nebebe [14]. 

Since Goyal [1] introduced the integrated inventory 

model between a supplier and a buyer, many 

researchers have developed this concept for various 

cases, such as Banerjee [2], Goyal [3] and Hill [15]. 

The first study on setup reduction is due to Porteus [16] 

with an economic order quantity (EOQ) model. Spence 

& Porteus [17] found the optimal rate of setup 

reduction in a multi-product EOQ model and Kim and 

others [4] the economic manufacturing quantity (EMQ) 

model, respectively. 

Recently, there has been an investigation an EOQ 

model which considers setup cost reduction in the 

variable lead time environment.  

Eyler et al. [18] extended the previous research in two 

areas. First, the EOQ model with setup cost reduction 

in the variable lead time environment. Second, 

investigation to a more realistic situation where there is 

only a finite number of opportunities for setup cost 

reduction investment.  

Denizel et al. [19] developed a dynamic lot-sizing 

model M where the values of the setup costs can be 

reduced by various amounts depending on the level of 

funds R committed to this reduction. Yang and Deane 

researched on dependence of setup time reduction and 

competitive advantage in a closed manufacturing cell 

[20]. 

 

Particle swarm optimization (PSO): is a population-

based swarm intelligence algorithm. It was first 

introduced by Kennedy and Eberhart [21] as a 

simulation of the social behavior of social organisms, 

such as bird flocking and fish schooling. PSO uses the 

physical movement of the individuals (particles) in the 

swarm and has a flexible and well-balanced 

mechanism to enhance and adapt to global and local 

exploration in continuous space, while some work has 

been done recently in discrete domains. Recent 

complete surveys for PSO can be found in [22, 23, 24]. 

Several successful applications of PSO to unclear 

problems reported in [25-28] motivated us to use PSO 

in this work.  

In [25-28], the advantages of PSO are demonstrated 

over other well-established PBM (Population Based 

Metaheuristic). PSO has been applied successfully to 

scheduling problems such as job shop scheduling, [29, 

30], flow shop scheduling [31,32], assembly 

scheduling [33], and resource-constraint project 

scheduling [34]. 

The wide use of PSO mainly during the last few years 

is due to the number of advantages of this method 

compared with other optimization methods. Some of 

the key advantages are as follows.  

This optimization method does not require the 

calculation of derivatives. The knowledge of good 

solutions is retained by all particles and the particles in 

the swarm share information among themselves. 

Furthermore PSO is less sensitive to the nature of the 

objective function, which can be used for stochastic 

objective functions and also can easily escape from 

local minima. 

The rest of the paper is organized as follows: Section 2 

addresses the notations and assumptions of the 

proposed model. The description of the setup time 

reduction formulation is given in section 3. Section 4 

describes the PSO algorithm.  

The joint economic lot-sizing model, setup time 

reduction, and Gradient search algorithm are described 

for a single supplier and a single buyer with single 

delivery and multiple deliveries in sections 5 and 6, 

respectively. In section 7, numerical examples and 

sensitivity analysis are presented. Conclusions are 

summarized in section 8. 

 
2. Notations and Assumptions 

Joint economic lot sizing model allows the supplier 

and the buyer to reduce their total costs. At the other 

hand, small lot sizing is a way to implementing 

successful JIT leading to minimum supply chain costs. 

In this study we extend Kim & Ha’s model [4] by 

considering setup time reduction as a decision variable 

in a joint economic lot-sizing (JELS) model with both 

Single delivery and several deliveries. 

 
2.1. Notations: 

Following notations are considered in this paper: 

D: buyer’s demand rate per unit time, deterministic 

P: supplier’s production rate per unit time, (P>D) 

A: buyer’s ordering cost per order 

S: supplier’s setup time 

C: unit cost for supplier’s setup time 

Q: buyer’s order quantity (production lot size) 

HB: buyer’s holding cost per unit time 

HS: supplier’s holding cost per unit time 

F: fixed transportation cost per trip 

V: unit variable cost for order handling and receiving 

N: number of deliveries per batch cycle (integer 

number) 

q: delivery size per trip, Q
q

N
  

 
2.2. Assumptions: 

1) We consider single supplier and single buyer for only 

one product. 

2) All necessary information of the buyer and supplier are 

given to both sides. 

3) Backorders and shortages are not allowed. 

4) The buyer pays transportation and order handling cost 

to facilitate frequent deliveries. 

5) Product is manufactured with a finite production rate P 

and P>D. (if P<D, we cannot satisfy buyer’s demand 

and the problem would be infeasible.) 

6) All cost parameters are known and constant. 
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7) No quantity discount is allowed and unit price is fixed. 

(demand rate and production rate are known, 

constant and deterministic. 

8) HB > HS , therefore it is not optimal to send any 

shipment when the buyer has some inventory. 

9) The number and size of transportation vehicles has no 

constraints. 

10)  The transportation and receiving cost of each 

shipment is a linear function of the shipped 

quantities at a fixed cost. 

11)  There is no lead time. 

 

In the Single Delivery case: 

12)  Every time the buyer requests an order, the supplier 

make the production set up on a lot for lot basis. 

In the Multiple Deliveries: 

13)  When the buyer places an order, the supplier splits 

the order quantity into small lot sizes and send them 

in equal shipments. 

 
3. Setup Time Reduction 

At first Porteus [16] introduces the relationship 

between optimal lot size and setup time reduction. 

Following Porteus, to reduce the setup time the cost 

equation have been modified by Kreng and Wu [35] as 

follows: 

 
( ) ln( )S S SC t x y t    for   0 S St t               (1) 

 

The rate of setup time reduction is calculated by Kreng 

and Wu [35]: 

 

1 S

S

t
R

t


   for   0 1R                      (2) 

 

x, y and tS are positive constants. tS and St  are the 

original setup time before reduction the setup time  and 

after reduction, respectively. 

A fixed cost is needed to reduce setup time by a fixed 

percentage. This fixed percentage is  , and the cost to 

reduce the increment of fixed percentage setup 

reduction is M, which has constant value. Therefore, 

the Eq.(1), CS, redefined as: 

 

( ) ln(1 )
ln(1 )

S S

M
C t R


  


              (3) 

 

where R is considered as the decision variable. 

 
4. PSO Algorithm 

In the implementation of the PSO, the population is 

referred to as a swarm and each individual as a particle. 

It is initialized with a random particles group:  

 
 

Fig.1. the flowchart of general PSO Algorithm  

 
and then searches the solution space for optimal value 

by updating generations. The general PSO algorithm is 

represented in Figures 1 and 2. 

In PSO, each particle in a social structure keeps in 

mind its best position and uses this as a factor for 

affecting its speed.  

A particle gains speed toward its individual best 

position considering how far away from that point. It 

also shows the same behavior for the global best 

position. In other words, while it is scanning the 

surface, it is affected by the global best position and 

adjusts its own speed. If the particle is far from the 

global best position, there will be a higher chance in its 

speed and direction. Individuals (particles) of a swarm 

show inclination to change their movements by using 

the information below. 

 

 

 

 

 

 

 

 

YES 

NO 
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 Position of the ith particle in kth iteration is 
k

ix   

(k=0,… itermax and i=1,…,N). 

 Speed of the particle i in iteration k is 
k

iV  . 

 Best position of the particle i (local best) is pBesti. 

 Best position of the particle group (global best) is 

gBest. 

 

Each individual's speed changes according to the 

formula in Eq.(4); 

 
1

2

( *( )*( )

*( )*( ))

k k k

i i i i i

k

i i

V w V C Rnd Pbest x

C Rnd Gbest x

    

 
          (4) 

 

Where w and Ci are inertia function and ith inertia 

factor, respectively. Rnd is a random number between 

0 and 1. 

Inertia value of the equation changes in each iteration. 

This changing is based on the logic of decreasing from 

the value determined to minimum value according to 

inertia function. 

The objective is to converge the created speed by 

diminishing on the further iterations; hence more 

similar results can be obtained [33]. 

Inertia function is obtained as follows: 

 

max min
max

max

( )*
w w

w w k
iter


 

              
(5) 

 

 
wmax     first inertia force 

wmin    minimum inertia force 

itermax maximum iteration number 

 

The values of Ci inertia factor and wmax and wmin inertia 

forces are investigated by Shi and Eberhart [37,38]. It 

is found that these values should not be changed from a 

problem to another. They fixed the values of these 

parameters as; Ci=2, wmax=0.9 and wmin=0.4. Therefore, 

we use these values in our study. 

Positions of the particles change by speeds as shown in 

Eq.(6) 

 
1 1k k k

i i ix x v                   (6) 
 

 
Same procedure is reiterated for each dimension. 

As it can be seen above, the advantages of the PSO are 

easiness to implement and having few parameters to 

adjust. However, there are some difficulties related 

with applying PSO on constricted models. But the PSO 

has been successfully applied in many areas, such as 

function optimization, artificial neural network 

training, fuzzy system control, and other areas [39]. 

in our model, we also use this algorithm for optimizing 

obtained functions.   

 
Fig.2. Algorithmic schema for general PSO 

 

 
5. Single Delivery (SD) case 

5.1. Joint Economic Lot Sizing (JELS) Model: 
In this section we first present a lot for lot inventory 

policy. In lot for lot model, the supplier produces 

optimal lot size at one setup and delivers it to the buyer 

at one shipment. The buyer’s total cost is composed of 

ordering cost, holding cost, transportation cost and 

order receiving cost: 

 

( ) ( )
2

Buyer B

D Q D
TC Q A H F VQ

Q Q
                 (7) 

 
The supplier’s total cost consists of setup cost and 

holding cost: 

 

( ) ( )
2

Supplier S

D Q D
TC Q CS H

Q P
               (8) 

 
The total cost function for a joint economic lot sizing 

model consists of all costs of both buyer and supplier. 

Hence, by adding Eq.(7) and Eq.(8), aggregate total 

cost function will be found. 

Initialization (for k=0) 

     For i=1 to N 

          Assign particles randomly in solution space (
k

ix ) 

          Generate initial solutions S(
k

ix ) 

          Assign pBesti = initial solutions S(
k

ix ) 

          Assign gBesti = the obtained best solution among all 

particles 

          Generate initial velocities randomly (
k

iV ) 

          Add velocities to the corresponding particles (
1k

ix  ) 

Initialization (for k=0) 

     Determine the inertia weight ( kw ) 

     For i=1 to N 

          Update velocities (
k

iV ) 

          Modify the current positions (
1k

ix 
) 

     Update the pBesti 

     Update the gBesti 

Finalize the algorithm (k=itermax) 

     Assign the gBesti=uBest and stop 
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( ) ( ) ( ( ))
2

aggregate B S

D Q D
TC Q A CS H H

Q P

D
F DV

Q

   

 

             (9) 

 
By taking the first derivative of Eq.(9), with respect to 

Q and set it equal to zero, optimal order quantity Q* 

will be obtained. 

 

2 ( )
*

( )B S

D A CS F
Q

DH H
P

 




             (10) 

 

5.2. Setup Time Reduction for SD Policy 

We know S is the supplier’s setup time and C is the 

unit cost for setup time. By considering s as the setup 

cost per unit time and tS as the setup time per 

production run before reduction, following equations 

are yield: CS=s St  and St = St (1-R) 

Then, the aggregate total cost for single delivery policy 

with considering the setup time reduction can be 

redefined as follows: 

 

( , ) ( (1 ) )

( ( )) ln(1 )
2 ln(1 )

D
TC Q R st R A

aggregate sQ

Q D D M
H H F DV K R

B S P Q 

   

    


 (11) 

 

K is the amortization of the setup reduction capital and 

a fixed reduction percentage,  , can be achieved 

whenever the unit incremental cost of M is made. 

 

5.3. Gradient Search for SD Policy 

In order to obtain optimal Q* and R* in single delivery 

case after setup time reduction, we should take the 

partial derivatives of Eq.(11) with respect to Q and R, 

By setting the derivatives equal to zero the optimum 

values for Q and R are obtained as follows: 

 
2 ( (1 ) )

*

( )

S

B S

D A st R F
Q

D
H H

P

  




            (12) 

 

* 1
.ln(1 )S

QKM
R

Dst 
 


             (13) 

 
6. Multiple Delivery (MD) Case 

6.1. Joint Economic Lot Sizing (JELS) Model: 
In multiple deliveries case, the order which is 

produced by quantity of Q, is delivered to buyer over N 

times, in small quantities q. So we have:
 
Q Nq . 

Small lot sizing is a way to implementing successful 

JIT. The buyer’s total cost is: 

( , )
2

( )

Buyer B

D Q
TC Q N A H

Q N

DN Q
F V

Q N

  


             

(14) 

 

The supplier’s total cost consists of setup cost and 

holding cost: 

 

( , )

(2 ) 1
2

Supplier

S

D
TC Q N CS

Q

QH D
N N

N P

 

 
   

 

            

(15) 

 

Adding Eq.(14) and Eq.(15) yields the total cost for the 

supplier and the buyer as follows: 

 

( , ) ( )

(2 )
( 1)

2

aggregate

B S

D
TC Q N A CS

Q

Q N D
H H N

N P

DN
F DV

Q

  

 
   

 

 

             

(16) 

 
 

 
Fig 3. Inventory-Time plot of buyer for MD case 

 

 
Fig 4. Inventory-Time plot of supplier for MD case 

 

 

Note that if the number of deliveries, N, in Eq.(16) is 

equal to one, the MD case becomes identical to Eq.(9) 

for SD policy. Hence, in this case, we assume that 

2N  . 
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According to calculations of Kim & Ha [4], by taking 

the first derivatives of Eq.(16) with respect to Q and N, 

we obtain following optimum values for N and Q: 

 

 ( ) ( ) 2
*

( )

B S S

S

A CS P H H DH
N

F P D H

  



             

(17) 

 
 

2 ( )
*

((2 ) 1)S B

ND A NF CS
Q

D
H H N N

P

 


   

             (18) 

 

N* denote the optimum integer value of N and Q* is 

the optimum value of Q. If N* in the Eq.(17) is not an 

integer number, we should choose N, which yields 

 min ( ), ( )TC N TC N  in Eq.(16), where N
+
 and N

-
 

represent the nearest integers larger and smaller than 

the N* respectively. The minimum aggregate total cost 

is obtained by substituting N* and Q* into Eq.(16). 

The optimal delivery size q*, which remains the same 

over multiple deliveries policy, is obtained by dividing 

Q* by N* from Eq.(17) and Eq.(18). 

 

6.2. Setup Time Reduction for MD Policy 

Integrating Eq.(2) and Eq.(3) to Eq.(16), the aggregate 

total cost for multiple deliveries with considering setup 

time reduction is obtained as follows: 

 

( , , ) ( (1 ) )

(2 )
( 1)

2

ln(1 )
ln(1 )

aggregate s

B S

D
TC Q N R st R A

Q

Q N D DN
H H N F

N P Q

M
DV K R



   

 
     

 

 


  (19) 

 

The above equation consisted of buyer’s ordering cost, 

buyer’s holding cost, transportation cost, order 

receiving cost, supplier’s setup cost after setup time 

reduction, supplier’s holding cost, and total setup 

reduction capital. The objective is to minimize the sum 

of these costs. 

 
6.3. Gradient Search Algorithm for MD Case 

We can determine the optimal order quantity, Q*, 

optimal rate of setup time reduction, R*, and optimal 

number of deliveries from the aggregate total cost after 

setup time reduction from Eq.(19) with regarding that 

TC(Q,N,R)aggregate is a convex function. The optimum 

values are found by taking partial derivatives of 

Eq.(19) with respect to R, N, and Q, and setting the 

derivatives equal to zero. 

 

 ( (1 )) ( ) 2
*

( )

S B S S

S

A st R P H H DH
N

F P D H

   



            (20) 

 

2 ( (1 ) )
*

((2 ) 1)

S

B S

ND st R A NF
Q

D
H H N N

P

  


   

            (21) 

 

 

* 1
ln(1 )S

QKM
R

Dst 
 


             (22) 

 

 
7. Numerical Examples 

In this section, we use an example which originally 

comes from Banerjee [2]. It was modified by Kim & 

Ha [4] and we gathered additional values from example 

of Kreng & Wu [35] for analyzing our model. 

We consider a buyer, a supplier and a single product. 

Buyer’s annual demand is 4800 units and the order cost 

for each order is 25$. Fixed transportation cost which 

buyer pays for each trip is 50$ and the unit variable 

cost for order handling and receiving is 1.00$/unit. 

Annual production capacity of supplier is 19220 units. 

The cost of supplier’s setup time is 400$ per unit. We 

assume that HB and HS are 7$ and 8$ per unit per year. 

The setup time before reduction policy is 4 and the 

setup cost per unit time is 100$, where the amortization 

of the setup reduction capital is 0.35. It is assumed that 

a rate of 30% of fixed reduction can be achieved 

whenever the unit incremental cost of 2000$ is made. 

In summary: 

 
A= 20 C×S= 400 

D= 4800 s= 100 

tS= 4 F= 60 

M= 2000 V= 1 

P= 19200 K= 0.35 

HS= 6 HB= 7 

 = 0.3   

  
7.1. Example for SD Policy Before and After Setup 

Time Reduction 

Table 1 presents the effect of the rate of setup time 

reduction on Q* and aggregate total cost. For single 

delivery policy, by using PSO algorithm and also 

Gradient Search algorithm (Eq.(11) and Eq.(19)) 

From this table, we can interfere that if the setup time 

is reduced from tS=4 to 0 and all other parameters  

remain unchanged, then by using GS algorithm, the 

optimal solution will be R*= 0.4, S
t = 2.4, Q*= 596.46, 

and TC*(Q,R)=10872.44; and by using PSO algorithm, 

the optimal solution will be R*= 0.4, S
t = 2.4, Q*= 

592.89, & TC*(Q,R)=10872.53. 

 

 

7.2. Example for MD Policy Before and After Setup 

Time Reduction 

Using the given parameters in PSO and GS algorithms, 

we calculate N* and Q*. Then by decreasing tS from 4 
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to 0, we find the optimal value of R. table 2 presents 

this results. 

From the results shown in table 2, we can interfere that 

by using the GS algorithm, optimal value of R is 0.1. In 

other word, if the setup time is reduced from tS=4 to 0 

and all other parameters remain unchanged, the optimal 

solution will be R*= 0.1, N*=2, 
S

t = 3.6, Q*= 859.34, 

and TC*(Q,R,N)= 10592.47. 

From the results of Particle Swarm Optimization 

Algorithm presented in table 2, we can interfere that by 

using this algorithm, optimal value of R is 0.1. In other 

word, if the setup time is reduced from tS=4 to 0 and all 

other parameters remain unchanged, the optimal 

solution will be R*= 0.1, N*=2, 
S

t = 3.6, Q*= 852.23, 

and TC*(Q,R,N)= 10592.67. 

 
Tab. 1. The effects of the rate of setup time reduction on Q* and aggregate total cost in single delivery  

 

 

R= 

1-t’/t 

ts ts’ ts’/ts Gradient Search PSO 

Q* ΔQ TC(Q) ΔTC Q* ΔQ TC(Q) ΔTC 

before 0 4 4 1 732.44 - 11025.75 - 736.18 - 11025.83 - 

A
ft

e
r
 s

et
u

p
 t

im
e 

r
e
d

u
c
ti

o
n

 

0.1 4 3.6 0.9 700.92 31.52 10964.63 61.12 703.37 32.81 10964.67 61.17 
0.2 4 3.2 0.8 667.92 64.52 10915.26 110.49 661.04 75.14 10915.56 110.27 

0.3 4 2.8 0.7 633.20 99.24 10882.19 143.56 634.54 101.64 10882.20 143.63 

0.4 4 2.4 0.6 596.46 135.98 10872.44 153.31 592.89 143.29 10872.53 153.30 
0.5 4 2.0 0.5 557.30 175.14 10897.44 128.31 559.17 177.01 10897.46 128.37 

0.6 4 1.6 0.4 515.18 217.26 10977.33 48.43 515.76 220.42 10977.33 48.50 

0.7 4 1.2 0.3 469.29 263.15 11151.87 -126.11 468.11 268.07 11151.88 -126.05 
0.8 4 0.8 0.2 418.40 314.04 11515.04 -489.29 416.93 319.25 11515.06 -489.23 

0.9 4 0.4 0.1 360.39 372.05 12382.32 -1356.6 358.47 377.71 12382.36 -1356.5 
1 4 0 0.0 291.04 441.40 - - 292.69 443.49 - - 

 
Tab. 2. The effects of R & Q on TC in multiple delivery policy using GS and PSO algorithm 

  

R
=

1
-t
’/
t

 

t s
 t s

’
 t s
’/
t s

 

N
*

 

N
 

Gradient Search PSO 

Q
*

 

Δ
Q

 

T
C

(Q
,N

)
 

m
in

 

T
C

(Q
,N

)
 

o
p

t(
N

)
 

Δ
T
C

 

Q
*

 

Δ
Q

 

T
C

(Q
,N

)
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Δ
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b
e
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0 4 4 1 2.49 

2 893.05 - 10604.83 

10597.83 3 0.0 

891.65 - 10604.83 

10599.408 3 - 
3 973.06 - 10597.83 962.98 - 10599.41 

A
ft

e
r
 s

et
u

p
 t

im
e 

r
e
d

u
c
ti

o
n

 

0.1 4 3.6 0.9 2.37 
2 859.34 113.72 10592.47 

10592.47 2 5.4 
852.23 39.42 10592.67 

10592.666 2 6.7 
3 940.07 32.99 10608.01 926.98 -35.33 10610.21 

0.2 4 3.2 0.8 2.24 
2 824.25 148.81 10595.55 

10595.55 2 2.3 
818.06 73.59 10595.70 

10595.6987 2 3.7 
3 905.87 67.19 10635.42 898.65 -7.00 10636.50 

0.3 4 2.8 0.7 2.11 
2 787.60 185.47 10619.37 

10619.37 2 -21.5 
779.18 112.47 10619.67 

10619.6704 2 -20.3 
3 870.33 102.73 10685.73 862.29 29.36 10686.97 

0.4 4 2.4 0.6 1.96 
2 749.15 223.91 10672.03 

10672.03 2 -74.2 
732.76 158.89 11012.95 

10691.9811 2 -92.6 
3 833.28 139.78 10767.49 820.11 71.54 10769.78 

0.5 4 2 0.5 1.81 
1 588.93 304.12 10945.41 

10766.43 2 -161.6 
601.63 290.02 10951.21 

10766.8611 2 -167.5 
2 708.63 264.43 10766.43 699.04 192.61 10766.86 

0.6 4 1.6 0.4 1.63 
1 545.24 427.82 11028.39 

10924.95 2 -327.1 
539.53 352.12 11026.48 

10925.1792 2 -325.8 
2 665.64 307.42 10924.95 658.79 232.86 10925.18 

0.7 4 1.2 0.3 1.44 
1 497.74 475.33 11206.99 

11190.79 2 -593.0 
491.48 400.17 11204.96 

11191.1373 2 -591.7 
2 619.68 353.38 11190.79 611.54 280.11 11191.14 

0.8 4 0.8 0.2 1.22 
1 445.19 527.87 11575.80 

11575.80 1 -978.0 
438.18 453.47 11573.61 

11573.6055 1 -974.2 
2 570.02 403.04 11663.77 561.24 330.41 11664.21 

0.9 4 0.4 0.1 0.94 1 385.55 587.52 12451.54 12451.54 1 -1853.7 377.43 514.22 12449.18 12449.1752 1 -1850 

1 4 0 0 0.54 1 314.80 658.27 - - - - 308.58 583.07 - - - - 
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7.3. Sensitivity Analysis 

A sensitivity analysis is performed to study the effects 

of changes in the parameters system on the optimal 

order quantity, rate of setup time reduction, and 

number of deliveries. This analysis is performed by 

increasing or decreasing the parameters by 10%, 20%, 

and 30% taking one at a time, keeping the remaining 

parameters at their original values. The effects of 

changes in parameters on SD case and MD case are 

investigated. Following ratios are being calculated for 

different quantity of these parameters: 
 

1

* *
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GradientSearch PSO
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* *
100

*
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TC TC
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which r1 shows the deviation of PSO solution from 

Gradient Search solution. r2 and r3 determine the 

difference of optimal cost function in MD and SD case, 

by using PSO and GS algorithms, respectively. 

 

Tab. 3. Sensitivity analysis over parameter D 
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Q
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R
*

 

T
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-

30% 
3360 606.1 0.1 8445.5 601.2 0.1 8445.7 -0.02 747.2 0 8216.67 761.46 0 8217.54 -0.11 0.03 0.03 

-

20% 
3840 612.1 0.2 9296.9 618.3 0.2 9297.2 -0.03 798.8 0 9031.99 801.29 0 9032.02 0.00 0.03 0.03 

-

10% 
4320 610.3 0.3 10116.3 614.6 0.3 10116.4 -0.01 815.2 0.1 9825.83 809.73 0.1 9825.96 -0.01 0.03 0.03 

0% 4800 601.2 0.4 10912.5 592.9 0.4 10913.0 -0.05 859.3 0.1 10592.5 852.23 0.1 10592.7 -0.02 0.03 0.03 

10% 5280 625.0 0.4 11689.0 632.4 0.4 11689.4 -0.03 1025.5 0 11334.6 1017.6 0.1 11335 -0.03 0.03 0.03 

20% 5760 605.4 0.5 12448.1 591.6 0.5 12449.6 -0.11 1039.8 0.1 12049.7 1035.2 0.1 12050.7 -0.09 0.03 0.03 

30% 6240 624.8 0.5 13192.7 629.4 0.5 13192.9 -0.01 1087.6 0.1 12750.3 1096.2 0.1 12749.6 0.06 0.03 0.03 

 

Tab. 4. Sensitivity analysis over parameter P 
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R
*

 

T
C

*
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-

30% 
13440 579.7 0.4 11102.2 595.4 0.4 11104.1 -0.170 993.7 0 10490.1 976.03 0 10492.9 -0.27 0.06 0.06 

-

20% 
15360 588.3 0.4 11024.0 601.3 0.4 11025.3 -0.112 984.9 0 10535.2 966.42 0 10538.4 -0.30 0.05 0.05 

-

10% 
17280 595.4 0.4 10962.4 614.7 0.4 10965.0 -0.241 978.3 0 10570.1 953.04 0 10575.1 -0.48 0.04 0.04 

0% 19200 601.2 0.4 10912.5 592.9 0.4 10913.0 -0.045 859.3 0.1 10592.5 852.23 0.1 10592.7 -0.02 0.03 0.03 

10% 21120 606.1 0.4 10871.4 624.6 0.4 10873.7 -0.212 859.3 0.1 10592.5 876.19 0.1 10593.5 -0.10 0.03 0.03 

20% 23040 610.2 0.4 10836.8 608.4 0.4 10836.8 -0.003 859.3 0.1 10592.5 871.69 0.1 10593 -0.05 0.02 0.02 

30% 24960 613.8 0.4 10807.4 631.7 0.4 10809.5 -0.191 859.3 0.1 10592.5 865.96 0.1 10593.5 0.00 0.02 0.02 

 

The following inferences can be made from the results 

of table 1 and 2. and sensitivity analysis based on table 

2 and 3. 

 By using PSO algorithm, which is a meta-

heuristic algorithm and gives an approximate 

solution, and Gradient Search algorithm, which 

gives an exact solution, and comparing the results 

of these methods by considering r1, we can 

interfere that the values computed for the 

aggregate total cost are approximately similar. 
 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

24
-0

9-
18

 ]
 

                             8 / 10

https://www.iust.ac.ir/ijieen/article-1-306-en.html


45              M.J. Tarokh, P. Motamedi & F. Bagheri            Optimizing Setup Time Reduction Rate in an Integrated ……  

 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  MMaarrcchh  22001133,,  VVooll..  2244,,  NNoo..  11  

 To compare effectiveness of different delivery 

policies, SD and MD, we should compare joint 

total costs of SD and MD case in tables 1 and 2. 

Since TC*MD<TC*SD, consequently, the policy of 

frequent shipment results in less total cost than 

the single shipment policy. TC*MD=10592.5 by 

N=2, while TC*SD=10872.5. 
 

 From table 4 we can interfere that by increasing 

the value of D, while other parameters remain 

unchanged, the optimal joint total cost of MD 

policy increases, while the optimal joint total cost 

of SD policy decreases. 
 

 Increasing the parameter P results to more joint 

total cost for both single delivery and multiple 

delivery policies. 

 

8. Conclusions 
The effects of setup time reduction in the integrated 

lot splitting strategy have been analyzed in this study. 

The proposed model determines optimal order 

quantity, optimal rate of setup reduction, and optimal 

number of deliveries on the integrated total relevant 

cost for single delivery and multiple deliveries policies, 

the results were inferred by comparing the optimal 

values of these two policies which obtained by using 

PSO and GS algorithms. 

The results show that which policy for lot-sizing is 

leading to lower total cost. Results show that the 

aggregate total cost in Single delivery policy is 

obtained 1.3% lower when we used the optimized 

setup time reduction rate. 

The proposed model can be extended in future studies 

by considering multiple products, multiple buyers and 

suppliers, or probabilistic parameters. 

 

Appendix: 

The expression of holding cost is derived by Joglekar 

(1988). From Fig.3 the holding cost of supplier is 

derived as follows: 
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