

GGPPSS TTiimmee RReecceeppttiioonn UUssiinngg AAlltteerraa SSOOPPCC BBuuiillddeerr aanndd

NNiiooss IIII:: AApppplliiccaattiioonn iinn TTrraaiinn PPoossiittiioonniinngg

S. Moslehpour
**
, K. Jenab & S. Valiveti

Saeid Moslehpour, Chair, Dept of ECE., Hartford University, USA,

Kouroush Jenab, Education Chair, Society of Reliability Engineering-Ottawa, Canada,

Srikar Valiveti, Dept of ECE., Hartford University, USA,

KKEEYYWWOORRDDSS ABSTRACT

As functional integration has increased in hand-held consumer

devices features such as Global Positioning System (GPS) receivers

have been embedded in increasingly more devices in recent years. For

example, the train positioning system based on GPS provides an

integrated positioning solution which can be used in many rail

applications without a cost intensive infrastructure. The network built

in the GPS receiver has the advantage of determining the exact

location and time of the train. The objective of this research was to

develop a system which accepts the location from the GPS receiver

mounted on the train and extracts its local time. This is implemented

using Altera SOPC builder in the NIOS – II environment. Nios II is a

32 bit soft-core embedded-processor architecture designed

specifically for the Altera family of FPGAs. The signal received using

the GPS receiver is given to the DE2 board through the UART port

and converted it in to local time and displayed on the NIOS II

console. A working system was developed, which accepts the location

from the GPS receiver and extracted its local time.

 © 2012 IUST Publication, IJIEPR, Vol. 23, No. 1, All Rights Reserved.

11.. IInnttrroodduuccttiioonn

The wide application of the global positioning

system (GPS) results in further development of the

geographic information systems and vice versa. By

receiving the geometric and geographic information,

the geographic information system technology (GIS)

can produce GIS database and thematic maps. As a

result, the GPS allows the accurate positioning of a

train based on satellite signals [12].

The main objective of this project is to develop a

system which accepts the location from the GPS

receiver and extracts its local time. This is

implemented using Altera SOPC Builder in the Nios II

environment. As successor of the CPLD (Complex

Programmable Logic Device), the FPGA (Field

**

Corresponding author: Saeid Moslehpour
 Email: moslehpou@hartford.edu

 Paper first received July 20, 2011, and in revised form Nov.

 04, 2011.

Programmable Gate Array) is a digital hardware-

programmable component that offers lots of new

perspectives for the digital signal processing, which

has been growing into the power electronics area.

Based on configurable connections between its basic

blocks, the logic elements (LE), the user can design a

system with multiple functions operating in parallel

inside one chip. This property, and others, gives some

advantages of the FPGA over DSP, as the possibility of

hardware optimization and the parallel processing of

data. Furthermore, the FPGA design made for one

specific component can be easily fitted into another

with similar capabilities, and can be modified

whenever necessary [10].

The growth in size and performance of field

programmable gate arrays (FPGAs) has compelled

system-on-a-programmable-chip (SoPC) designers to

use soft processors for controlling systems with large

numbers of intellectual property (IP) blocks. Soft

processors control IP blocks, which are accessed by the

Train positioning,

GIS, GPS, SOPC,

Nios II

MMaarrcchh 22001122,, VVoolluummee 2233,, NNuummbbeerr 11

pppp.. 1133--2211

hhttttpp::////IIJJIIEEPPRR..iiuusstt..aacc..iirr//

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh

 ISSN: 2008-4889

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

24
-1

2-
23

]

 1 / 10

mailto:moslehpou@hartford.edu
https://www.iust.ac.ir/ijieen/article-1-409-en.html

14 S. Moslehpour, K. Jenab & S. Valiveti GGPPSS TTiimmee RReecceeppttiioonn UUssiinngg AAlltteerraa SSOOPPCC BBuuiillddeerr aanndd……

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, MMaarrcchh 22001122,, VVooll.. 2233,, NNoo.. 11

processor either as peripheral devices or/and by using

custom instructions (CIs) [3].

Nios II is a 32 bit soft-core embedded-processor

architecture designed specifically for the Altera family

of FPGAs. FPGA is one of the most successful of

today’s technologies for developing the systems which

require a real time operation. Semi-custom and full

custom application specific integrated circuit (ASIC)

devices are also used for this purpose but FPGA

provide additional flexibility as they can be used with

tighter time to-market schedules. FPGAs provide the

ability to upgrade architectures quickly to meet

evolving requirements, while scalability allows use of

FPGAs in low-cost and high-performance systems.

FPGA places fixed logic cells on the Wafer and the

FPGA designer construct more complex functions from

these cells [4]. The signal received using the GPS

receiver is sent to the DE2 board through the UART

port and converted it in to local time and displayed on

the console.

1-1. System-On-a-Programmable Chip (SOPC)

A new technology has emerged that enables designers

to utilize a large Field Programmable Gate Arrays

(FPGA) that contains both memory and logic elements,

along with a processor core to implement a computer

and custom hardware for system-on-a-chip (SOC)

applications.

This approach has been termed as system-on-a-

programmable chip (SOPC). SOPC Builder is a

powerful system development tool which enables one

to define and generate a complete system-on-a-

programmable-chip (SOPC) in much less time than

using traditional, manual integration methods. The

designing technology of SOPC is the products of the

modern computer-aided design technology, the EDA

technology and the great development of large scale

integrated circuit technology.

SOPC technology is a completed electronic system,

including the embedded processor system, the port

system and the hardware acceleration or co-processors

systems, the DSP systems, digital communication

systems, the storage and general digital circuit system.

It is embedded in a single FPGA to achieve the design

of the circuit. SOPC Builder automates the task of

integrating hardware components [9]. It reduces the

task of manually writing HDL modules to wire the

components of the system. Once the system

components are specified in a Graphical user Interface

(GUI), the SOPC Builder automatically generates the

interconnect logic [1].

1-2. Soft Processor

To increase the flexibility of single-chip evolvable

hardware systems, we explore possibilities of systems

with the evolutionary algorithm implemented in

software on an on-chip processor. This gives higher

flexibility compared to implementing an evolutionary

algorithm directly in hardware, since the parameters

and behavior of the algorithm can easily be changed,

and complex operators are more feasible to implement

[11].

Soft processors have become an increasingly common

component of systems that use Field-Programmable

Gate Arrays (FPGAs). Soft Processors are used to

implement a wide variety of control and data

processing functionality. Often, some additional

functionality needs to be added to a system when there

is very little space left on the physical device. This

functionality may not be performance critical, and so

could be implemented on a slow soft processor. For

this reason it may be useful to have a processor that is

as small as possible yet similar to other commonly-

used processors [2].

1-3. Nios II Processor

A Nios II processor system is equivalent to a

microcontroller or computer on a chip that includes a

CPU and a combination of peripherals and memory on

a single chip. The term Nios II processor system refers

to a Nios II processor core, a set of on-chip peripherals,

on chip memory, off-chip memory, which are all

implemented on a single Altera chip. Like a

microcontroller family, all Nios II processor systems

use a consistent instruction set and programming

model.

1-4. SOPC Design Flow

The traditional flow of Computer Aided Tools (CAD)

typically follows a path from hardware description

language (HDL) or schematic design entry. The design

is synthesized and necessary tools are used to program

the design into an FPGA. A processor core

configuration tool block is provided in the SOPC

Builder, which is a user friendly GUI interface that

allows the designer to customize the processor for a

particular application. The configurable parameters

include the datapath width, memory, address space and

peripherals such as general purpose I/0, UART’s,

Ethernet controllers, memory controllers. Once the

processor parameters are specified in the GUI

interface, the processor core is generated in the form of

an HDL file or netlist file.

The full hardware system designed is then compiled

and the FPGA can be programmed with the resulting

file using the standard tools included in the SOPC

Builder [1].

When the processor core configuration tool generates

the HDL or netlist files, it also creates a number of

library files and their associated C header files, that are

customized for the specific processor core generated. A

C/ C++ compiler targeted at this processor is also

provided which allows the designer to program the

application on the processor.

Once a program file has been generated, it must be

loaded into the processor’s program and data

memories. This loading can be done in several ways

depending on the memory configurations of the

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

24
-1

2-
23

]

 2 / 10

https://www.iust.ac.ir/ijieen/article-1-409-en.html

S. Moslehpour, K. Jenab & S. Valiveti GGPPSS TTiimmee RReecceeppttiioonn UUssiinngg AAlltteerraa SSOOPPCC BBuuiillddeerr aanndd…… 15

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, MMaarrcchh 22001122,, VVooll.. 2233,, NNoo.. 11

processor. In general, processor cores are classified as

either hard or soft.

This designation refers to the flexibility or

configurability of the core. Hard cores are less

configurable, but they tend to have higher performance

characteristics than soft cores. Hard processor cores

use an embedded processor core in addition to FPGA’s

normal logic elements. Soft cores use existing

programmable logic elements from the FPGA to

implement the processor logic. Soft core processors are

feature rich and flexible, allowing the designer to

specify the memory width, the ALU functionality,

number and types of peripherals and memory address

space parameters. Soft cores have slower clock rates

and use more power than an equivalent hard processor

core.

For projects requiring a hardware implementation, the

FPGA based SOPC approach is easier, faster and more

economical [1].

1-5. SOPC Component

An SOPC Builder component is a hardware design

block available within SOPC Builder that can be

instantiated in an SOPC Builder system. These are the

following types of components in an SOPC Builder

system:

1. Components that include their associated logic

inside the SOPC Builder system.

2. Components that interface to logic outside the

SOPC Builder system [5].

Fig. 1. SOPC Components

Fig 1, represents components that are instantiated

inside the SOPC Builder system. The component

defines its logic in an associated HDL file. During

system generation, SOPC Builder instantiates the

component and connects it to the rest of the system.

The component can include exported signals in conduit

interfaces. Conduit interfaces become ports on the

system, so they can be connected to logic outside the

SOPC Builder system in the board-level schematic [5].

In general, components are connected to the system

interconnect fabric using the Avalon Memory-Mapped

(Avalon-MM) interface or the Avalon Streaming

(Avalon-ST) interface. A single component can

provide more than one Avalon port i.e. a component

might provide an Avalon-ST source port, in addition to

an Avalon-MM slave for control.

1-6. Avalon Switch Fabric

The system interconnect fabric is the collection of

interconnect and logic resources that connects Avalon-

MM master and slaves on components in a system.

SOPC Builder generates the system interconnect fabric

to match the needs of the components in a system. The

system interconnect fabric implements the connection

details of a system. It guarantees that signals are routed

correctly between master and slaves, as long as the

ports hold to the rules of the Avalon Interface

Specifications.

System interconnect fabric for memory-mapped

interfaces supports the following:

1. Any number of master and slave components. The

master-to-slave relationship can be one-to-one,

one-to-many, many-to-one, or many-to-many.

2. On-chip components.

3. Interfaces to off-chip devices.

4. Master and slaves of different data widths.

5. Components operating in different clock domains.

6. Components using multiple Avalon-MM ports [5].

Fig. 2. Avalon Switch Fabric

SOPC Builder supports components with multiple

Avalon-MM interfaces, such as the processor

component shown in Fig 2. Because SOPC Builder can

create system interconnect fabric to connect

components with multiple interfaces, one can create

complex interfaces that provide more functionality than

a single Avalon-MM interface.

System interconnect fabric can connect any

combination of components, as long as each interface

conforms to the Avalon Interface Specifications. It can

connect a system comprised of only two components

with unidirectional dataflow between them. Avalon-

MM interfaces are suitable for random address

transactions, such as to memories or embedded

peripherals. Generating system interconnect fabric is

SOPC Builder’s primary purpose [5].

1-7. Assigning IRQs in SOPC Builder

One can specify IRQ settings on the System Contents

tab of SOPC Builder. After adding all components to

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

24
-1

2-
23

]

 3 / 10

https://www.iust.ac.ir/ijieen/article-1-409-en.html

16 S. Moslehpour, K. Jenab & S. Valiveti GGPPSS TTiimmee RReecceeppttiioonn UUssiinngg AAlltteerraa SSOOPPCC BBuuiillddeerr aanndd……

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, MMaarrcchh 22001122,, VVooll.. 2233,, NNoo.. 11

the system, one can make IRQ settings for all interrupt

senders, with respect to each interrupt receiver. For

each slave, one can either specify an IRQ number, or

specify not to connect the IRQ.

2. Nios II Processor
As shown in Fig 3, Nios II processor system is

equivalent to a microcontroller or computer on a chip

that includes a CPU and a combination of peripherals

and memory on a single chip. Like a microcontroller

family, all Nios II processor systems use a consistent

instruction set and programming model.

The Nios II processor is a general-purpose RISC

processor core, providing:

1. Full 32-bit instruction set, data path, and address

space.

2. 32 general-purpose registers and 32 external

interrupt sources.

3. Single-instruction 32 × 32 multiply and divide

producing a 32-bit result.

4. Dedicated instructions for computing 64-bit and

128-bit products of multiplication.

5. Single-instruction barrel shifter.

6. Access to a variety of on-chip peripherals, and

interfaces to off-chip memories and peripherals.

7. Hardware-assisted debug module enabling

processor start, stop, step and trace under

integrated development environment (IDE)

control.

8. Software development environment based on the

GNU C/C++ tool chain and Eclipse IDE.

9. Instruction set architecture (ISA) compatible

across all Nios II processor systems [6].

Fig. 3. Nios II Processor

2-1. Customizing Nios II Processor Designs

Altera FPGAs provide flexibility to add features and

enhance performance of the processor system.

Unnecessary processor features and peripherals can be

eliminated and made to fit the design of a smaller,

lower-cost device.

The pins on the chip can be rearranged to make board

design easier. For example, address and data pins for

external SDRAM memory can be moved to any side of

the chip to shorten board traces [6].

Extra pins and logic resources on the chip can be used

for functions unrelated to the processor. Extra

resources can provide a few extra gates and registers as

glue logic for the board design; or extra resources can

implement entire systems. For example, a Nios II

processor system consumes only 5% of a large Altera

FPGA, leaving the rest of the chip’s resources

available to implement other functions.

Extra pins and logic on the chip can be used to

implement additional peripherals for the Nios II

processor system. Altera offers a growing library of

peripherals that can be easily connected to Nios II

processor systems.

In practice, most FPGA designs do implement some

extra logic in addition to the Nios II processor system.

Additional logic has no effect on the programmer’s

view of the Nios II processor.

2-2. Configurable Soft-Core Processor

The Nios II processor is a configurable soft-core

processor, as opposed to a fixed, off-the-shelf

microcontroller. Configurable means that features can

be added or removed on a system-by-system basis to

meet performance or price goals. “Soft-core” means

the CPU core is offered in “soft” design form (i.e., not

fixed in silicon), and can be targeted to any Altera

FPGA family.

It is the users that configure the Nios II processor and

peripherals to meet their specifications, and then

program the system into an Altera FPGA [7].

Configurability does not mean that designers must

create a new Nios II processor configuration for every

new design. Altera provides ready-made Nios II system

designs that system designers can use asis. If these

designs meet the system requirements, there is no need

to configure the design further.

In addition, software designers can use the Nios II

instruction set simulator to begin writing and

debugging Nios II applications before the final

hardware configuration is determined.

2-3. Flexible Peripheral Set & Address Map

A flexible peripheral set is one of the most notable

differences between Nios II processor systems and

fixed microcontrollers. Because of the soft core nature

of the Nios II processor, designers can easily build

made-to-order Nios II processor systems with the exact

peripheral set required for the target applications [6].

A result of flexible peripherals is a flexible address

map. Software constructs are provided to access

memory and peripherals generically, independently of

address location. Therefore, the flexible peripheral set

and address map does not affect application

developers.

Peripherals can be categorized into two broad classes:

1. Standard peripherals.

2. Custom peripherals.

a. Standard Peripherals

Altera provides a set of peripherals commonly used in

microcontrollers, such as timers, serial communication

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

24
-1

2-
23

]

 4 / 10

https://www.iust.ac.ir/ijieen/article-1-409-en.html

S. Moslehpour, K. Jenab & S. Valiveti GGPPSS TTiimmee RReecceeppttiioonn UUssiinngg AAlltteerraa SSOOPPCC BBuuiillddeerr aanndd…… 17

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, MMaarrcchh 22001122,, VVooll.. 2233,, NNoo.. 11

interfaces, general-purpose I/O, SDRAM controllers,

and other memory interfaces as shown in Fig 4. The

list of available peripherals continues to grow as Altera

and third-party vendors release new soft peripheral

cores [6].

Fig. 4. Standard Peripherals

b. Custom Peripherals

As shown in Fig 5, designers can also create their own

custom peripherals and integrate them into Nios II

processor systems. For performance, critical systems

that spend most CPU cycles executing a specific

section of code, it is a common technique to create a

custom peripheral that implements the same function in

hardware. This approach offers a double performance

benefit: the hardware implementation is faster than

software; and the processor is free to perform other

functions in parallel while the custom peripheral

operates on data [6].

Fig. 5. Custom Peripherals

c. Custom Instructions

Like custom peripherals, custom instructions are a

method to increase system performance by augmenting

the processor with custom hardware. The soft-core

nature of the Nios II processor enables designers to

integrate custom logic into the arithmetic logic unit

(ALU). Similar to native Nios II instructions, custom

instruction logic can take values from up to two source

registers and optionally write back a result to a

destination register [6].

By using custom instructions, designers can tune the

system hardware to meet performance goals. Because

the processor is implemented on reprogrammable

Altera FPGAs, software and hardware engineers can

work together to iteratively optimize the hardware and

test the results of software executing on real hardware.

Fig. 6. Custom Instructions

From the software perspective, custom instructions

appear as machine generated assembly macros or C

functions, so programmers do not need to know

assembly in order to use custom instructions.

SOPC Builder design tool fully automates the process

of configuring processor features and generating a

hardware design that can be programmed into an

FPGA.

Fig 6, represents the SOPC Builder graphical user

interface (GUI) which enables hardware designers to

configure Nios II processor systems with any number

of peripherals and memory interfaces. Entire processor

systems can be created without requiring the designer

to perform any schematic or hardware description-

language (HDL) design entry. SOPC Builder can also

import a designer’s HDL design files, providing an

easy mechanism to integrate custom logic into a Nios

II processor system.

After system generation, the design can be

programmed onto a board, and software can be

debugged while program is being executed on the

board. Once the design is programmed into a board, the

processor architecture is fixed. Software development

proceeds in the same manner as for traditional, non-

configurable processors [6].

3. Proposed Design of the Project
The main objective of this research is to develop a

system which accepts the location from the GPS

receiver and extracts its local time. This is

implemented using Altera SOPC Builder in the NIOS

II environment. The previous chapters explain in

details about the SOPC Builder and the NIOS II

processor. This chapter discusses in detail about the

working of the proposed design.

As the idea of using a soft-core processor was

something new, our initial plan was to develop a

simpler design using the SOPC Builder and NIOS II

processor. But after the training (organized by Altera

corporation) on the above mentioned tools, the project

was developed on a complex design.

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

24
-1

2-
23

]

 5 / 10

https://www.iust.ac.ir/ijieen/article-1-409-en.html

18 S. Moslehpour, K. Jenab & S. Valiveti GGPPSS TTiimmee RReecceeppttiioonn UUssiinngg AAlltteerraa SSOOPPCC BBuuiillddeerr aanndd……

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, MMaarrcchh 22001122,, VVooll.. 2233,, NNoo.. 11

A personal computer (PC) provided with Quartus II

software including the SOPC Builder environment and

the Nios II soft-core processor are used for developing

the proposed system. The figure shown above explains

the system in detail. The GPS antenna receives the

signals from the satellite and these signals are

transmitted to the system using the GPS module. The

GPS receiver and the GPS transmitter together form a

GPS Module.

The extracted signals are transmitted to the

development board via RS 232 which is used for serial

communication.

The software built will be executed by a Nios II

processor-based system in an FPGA. Therefore, the

initial step is to configure the FPGA on your

development board with the pre-generated Nios II

standard hardware system. One has to download the

FPGA configuration file, that is, the SRAM Object File

(.sof) that contains the Nios II standard system to the

board.

As the main idea of the project was to extract the GPS

time, the software part was developed to eliminate the

rest of the content received by the Antenna. Fig 7,

represents Eclipse IDE environment where the

software part was developed in C language. The

eclipse environment has a C/C++ compiler and a set of

powerful commands, utilities, and scripts to build

options for applications, board support packages, and

software libraries. Nios II Software Build Tools for

Eclipse focuses on improving software productivity for

large software applications and team-based

software design.

Fig. 7. Developing of software part in Eclipse

environment

3-1. Implementation

The block diagram provided in Fig 8, explains about

the implementation of the proposed application.

Fig. 8. Block Diagram of the Proposed Application

3-2. Nios II standard hardware system

The hardware system developed has four main parts:

1. Nios II Processor core.

2. On-chip memory.

3. JTAG UART.

4. UART(RS 232 for serial port)

Fig 9, represents the core configuration of Nios II

processor Nios II processor core has three cores:

 Nios II/f core (Fast)

 Nios II/s core (Standard)

 Nios II/e core (Economy)

Fig. 9. Nios II Core Configuration

a. Nios II/f Core (Fast)

The Nios II/f fast core is designed for high execution

performance. Performance is gained at the expense of

core size.

The base Nios II/f core, without the memory

management unit (MMU) or memory protection unit

(MPU) is approximately 25% larger than the Nios II/s

core. “Nios II/f is designed to maximize the

instructions-per-cycle execution efficiency, to optimize

interrupt latency, to maximize fMAX performance of

the processor core” [6].

The Nios II/f core has separate optional instruction and

data caches. It provides optional MMU to support

operating systems that require an MMU. It also

provides optional MPU to support operating systems

and runtime environments that desire memory

protection but do not need virtual memory

management.

Nios II/f core can access up to 2 GB of external

address space when no MMU is present and 4 GB

when the MMU is present. It supports optional external

interrupt controller (EIC) interface to provide

customizable interrupt prioritization. It also supports

optional shadow register sets to improve interrupt

latency, and supports optional tightly-coupled memory

for instructions and data.

Nios II/f core provides optional hardware multiply,

divide, and shift options to improve arithmetic

performance and supports the addition of custom

instructions.

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

24
-1

2-
23

]

 6 / 10

https://www.iust.ac.ir/ijieen/article-1-409-en.html

S. Moslehpour, K. Jenab & S. Valiveti GGPPSS TTiimmee RReecceeppttiioonn UUssiinngg AAlltteerraa SSOOPPCC BBuuiillddeerr aanndd…… 19

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, MMaarrcchh 22001122,, VVooll.. 2233,, NNoo.. 11

b. Nios II/s core (Standard)

The Nios II/s standard core is designed for small core

size. On-chip logic and memory resources are

conserved at the expense of execution performance.

The Nios II/s core uses approximately 20% less logic

than the Nios II/f core, but execution performance also

drops by roughly 40%.

Designed Nios II/s does not cripple performance for

the sake of size. This core can be used for medium-

performance applications [6].

The Nios II/s core has an instruction cache, but no data

cache, and can access up to 2 GB of external address

space.

It supports optional tightly-coupled memory for

instructions and employs a 5-stage pipeline. It provides

hardware multiply, divide, and shift options to improve

arithmetic performance and also supports the addition

of custom instructions and JTAG debug module.

c. Nios II/e Core (Economy)

The Nios II/e economy core is designed to achieve the

smallest possible core size. Nios II/e core is designed

with a singular design goal; i.e. to reduce resource

utilization any way possible, while still maintaining

compatibility with the Nios II instruction set

architecture.

Hardware resources are conserved at the expense of

execution performance. The Nios II/e core is roughly

half the size of the Nios II/s core, but the execution

performance is substantially lower.

The Nios II/e core executes at most one instruction per

six clock cycles and can access up to 2 GB of external

address space. Like other cores it supports the addition

of custom instructions and JTAG debug module. But it

does not provide hardware support for potential

unimplemented instructions. It does not have

instruction cache or data cache and cannot perform

branch prediction [6].

Fig. 10. Developing the Nios II Application in

Eclipse Environment

Fig 10, represents the development of the application

(Nios II/S core) in eclipse environment. The on-chip

memory is used to store the date from the GPS

receiver.

3-3. On-Chip Memory.

The on-chip Static Random Access Memory (SRAM)

is used for data memory residing on-chip that is

mapped into an address space which is put out of place

from the off-chip memory but connected to the same

address and data buses. If the application is small and

can fit into memory blocks available on the FPGA,

then the program can be initialized in the on-chip

memory when the hardware configuration is

programmed [6].

As the application program has to be modified a

number of times before the final program is complete,

a boot loader is provided to download the application

code from the PC to the memory on an FPGA. A

software boot loader is comprised of code that is

loaded into an on-chip memory.

A hardware boot loader provides functionality very

similar to a software boot loader, but it is implemented

in dedicated logic within the processor core. The boot

loader hardware can start and stop the processor and

can control the downloading of a program over the

JTAG or serial interface to the desired memory

locations.

3-4. RS 232 Interface

RS-232 (Recommended Standard 232) is a standard

for serial binary single-ended data and control signals

connecting between a DTE (Data Terminal Equipment)

and a DCE (Data Circuit-terminating Equipment).

It is commonly used in computer serial ports. The

standard defines the electrical characteristics and

timing of signals, the meaning of signals, and the

physical size and pin out of connectors. As a result, the

voltage values for the data bits and the control signals

are opposed to each other.

3-5. UART

The Universal Asynchronous Receiver/Transmitter

(UART) controller is the key component of the serial

communications subsystem of a computer. The UART

takes bytes of data and transmits the individual bits in a

sequential fashion. At the destination, a second UART

re-assembles the bits into complete bytes.

Serial transmission is commonly used with modems

and for non-networked communication between

computers, terminals and other devices [9].

3-6. System Interconnect Fabric for Streaming

Interfaces

Avalon-ST interconnect fabric is logic generated by

SOPC Builder. SOPC Builder can specify how Avalon-

ST source and sink ports connect. SOPC Builder

creates a high performance point-to-point interconnect

between the two components. The Avalon-ST

interconnect is flexible and can be used to implement

on-chip interfaces for industry standard

telecommunications and data communications cores.

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

24
-1

2-
23

]

 7 / 10

https://www.iust.ac.ir/ijieen/article-1-409-en.html

20 S. Moslehpour, K. Jenab & S. Valiveti GGPPSS TTiimmee RReecceeppttiioonn UUssiinngg AAlltteerraa SSOOPPCC BBuuiillddeerr aanndd……

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, MMaarrcchh 22001122,, VVooll.. 2233,, NNoo.. 11

Fig. 11. Interconnect between source and sink

Fig 11, illustrates the simplest system, which generates

interconnect between the source and sink. This source-

sink pair includes only the data and valid signals.

All data transfers using Avalon-ST interconnect occur

synchronously to the rising edge of the associated

clock interface.

All outputs from the source interface, including the

data, channel, and error signals, must be registered on

the rising edge of the clock. Registers are not required

for inputs at the sink interface [7].

4. Conclusions

As the main objective of this project is to extract

the time from the GPS receiver and extract its local

time on the train, the results are mainly based on two

factors, i.e, extracting the signal from satellite using

GPS Module and transferring the extracted signal from

GPS module to the DE2 board.

The main function of the GPS module is to extract the

signal from the satellite using antenna. The figure

shown below represents the GPS antenna, which

extracts the signal from the satellite.

The primary function of the LNA is to set the receivers

noise figures and eliminate out of band interference.

The GPS module is provided with a 5V external power

supply.

The extracted signal is sent to the GPS module using

an SMA connector.

Fig. 12. Working Results of the GPS Module

Fig 12, shows the working results of the GPS module.

The Green LED glowing represents the power supply

to the GPS module and the yellow LED goes blinking

ON and OFF representing the data transmitting and

receiving. The data received is sent to the DE2 board

using and RS 232 serial cable.

Fig. 13. Working Results of Developing System

Using SOPC Builder

Fig 13, represents the results of successfully generating

a Nios II processor system using SOPC builder.

A working system was developed, which accepts the

location from the GPS receiver and extracted its local

time. Fig 14 and Fig 15 represents the working results

of the project.

Fig. 14. Displaying Time in Nios II Console

Fig. 15. Working Results of Hardware

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

24
-1

2-
23

]

 8 / 10

https://www.iust.ac.ir/ijieen/article-1-409-en.html

S. Moslehpour, K. Jenab & S. Valiveti GGPPSS TTiimmee RReecceeppttiioonn UUssiinngg AAlltteerraa SSOOPPCC BBuuiillddeerr aanndd…… 21

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, MMaarrcchh 22001122,, VVooll.. 2233,, NNoo.. 11

References
[1] Hamblen, J.O., Hall, T.S., Furman, M.D., Rapid

Prototyping of Digital Systems, SOPC Edition

Springer Science+Business Media, LLC, New York,

USA, 2008.

[2] Robinson, J.; Vafaee, S.; Scobbie, J.; Ritche, M.;

Rose, J., The Supersoft Small Processor. IEEE

Transactiojns on Programmable Logic Conference

(SPL), 2010 VI Southern, 2010, pp:3-8.

[3] Fort, B., Capalija, D., Vranesic, Z.G., Brown, S.D., A

Multithreaded Soft Processor for SoPC Area

Reduction. 14th Annual IEEE Symposium and IEEE

Transactions on Field-Programmable Custom

Computing Machines, FCCM '06. 2006, pp:131-142.

[4] Manjurkha, M., Pathan, Deshmukh, A.Y., FPGA

Implementation of Real Time Processor. International

Journal of VLSI and Signal Processing Applications,

Vol.1, No.2, 2011, pp:2231-3133.

[5] Altera Quartus II version 7.2 Handbook, Vol.5: SOPC

Builder,

http://www.cs.columbia.edu/~sedwards/classes

/2010/4840/n2cpu_nii5v3.pdf (accessed Sept. 2011).

[6] Altera Embedded Design Handbook. Ver.2.9, July

2011,

http://www.altera.com/literature/hb/nios2/edh_ed_ha

ndbook.pdf (accessed Sept. 2011).

[7] Altera Nios II Processor Reference Handbook.

Ver.11.0, May 2011,

 http://www.altera.com/literature/hb/nios2/

n2cpu_nii51002.pdf (accessed Sept. 2011).

[8] Durda, F., Serial and UART Tutorial, FreeBSD:

doc/en_US.ISO8859-1/articles/serial-uart/article,

Vol.1.14.(accessed Oct. 2010).

[9] Zhang, M., Liu, H.T., The Design of the Displaying

System Based on the SOPC Embedded Chips. The 2011

Proceedings International Conference on Electric

Information and Control Engineering, ICEICE 2011, art.

no. 5777471, 2011, pp. 5477-5480.

[10] Alcalde, A.L.P., Ortmann, M.S., Mussa, S.A., NIOS II

Processor Implemented in FPGA: An Application on

Control of a PFC Converter. Power Electronics

Conference, COBEP '09. Brazil. 2009, pp:4446-4451.

[11] Glette, K., Torresen, J., Yasunaga, M., Yamaguchi, Y.,

On-Chip Evolution Using a Soft Processor Core Applied

to Image Recognition. The First NASA/ESA Conference

on Adaptive Hardware and Systems, 2006, pp:373-380.

[12] Mintsis, G., Basbas, S., Papaioannou, P., Taxiltaris, C.,

Tziavos, I.N., Applications of GPS Technology in the

Land Transportation System, European Journal of

Operational Research, Vol.152, No.2, 2004, pp:399-409.

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

24
-1

2-
23

]

 9 / 10

http://www.cs.columbia.edu/~sedwards/classes
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://www.altera.com/literature/hb/nios2/
http://www.scopus.com.myaccess.library.utoronto.ca/authid/detail.url?origin=resultslist&authorId=42162429500&zone=
http://www.scopus.com.myaccess.library.utoronto.ca/authid/detail.url?origin=resultslist&authorId=42161505100&zone=
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5340226
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5340226
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10912
https://www.iust.ac.ir/ijieen/article-1-409-en.html

22 S. Moslehpour, K. Jenab & S. Valiveti GGPPSS TTiimmee RReecceeppttiioonn UUssiinngg AAlltteerraa SSOOPPCC BBuuiillddeerr aanndd……

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, MMaarrcchh 22001122,, VVooll.. 2233,, NNoo.. 11

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

24
-1

2-
23

]

Powered by TCPDF (www.tcpdf.org)

 10 / 10

https://www.iust.ac.ir/ijieen/article-1-409-en.html
http://www.tcpdf.org

