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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

The set covering problem (SCP) is a well-known combinatorial 

optimization problem. This paper investigates development of a local 

branching-based solution approach for the SCP. This solution 

strategy is exact in nature, though it is designed to improve the 

heuristic behavior of the mixed integer programming solver. The 

algorithm parameters are tuned by design of experiments approach. 

The proposed method is tested on the several standard instances. The 

results show that the algorithm outperforms the best heuristic 

approaches found in the literature. 
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11..  IInnttrroodduuccttiioonn


  

The set covering problem (SCP) is a classical 

combinatorial optimization problem that is central in a 

variety of scheduling, routing, and location 

applications. The SCP is a main model for locomotive 

scheduling in rail transportation, where a given set of 

trains has to be covered by a minimum-cost set of 

locomotives that each train should be covered by at 

least one locomotive. 

Let A ( )ija be a 0-1 m n matrix with M = {1, 2, …, 

m} and N = {1, 2, …, n} denoting, respectively, the 

sets of rows and columns of A. Let c ( )jc be n-vector 

of costs associated with the columns of A. We say that 

a column Nj  covers a row Mi  if 1.ija  The problem 

is to find a minimum cost column subset S N such 

that each row Mi  is covered by at least one 
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column S.j 

 

Let ( )jx x be the column vector of 

variables 1jx  if S,j 0jx  otherwise. The classic 

mathematical formulation for the SCP is as follows: 

 

 ( )= j j

j N

Minimize z x c x


  (1) 

 Subject to   

1ij j

j N

a x i M


    (2) 

 0, 1         jx j N    (3) 

 
Objective function (1) calculates the cost. Constraint 

(2) ensures that each row is covered by at least one 

column. Constraint (3) ensures the binary nature of 

decision variables [1]. 

The set covering problem is known to be NP-hard [2]. 

It has been considered in the literature as a basic 

formulation for many real-world optimization 

Heuristics, set covering 
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problems, therefore it is well-known for its numerous 

applications. Many algorithms have been developed to 

solve this problem. The literature covers exact, 

heuristic and metaheuristic approaches to solve the 

SCP.  

Exact algorithms are mostly based on brand-and-bound 

and branch-and-cut [3, 4]. In recent years some works 

are presented in this issue such as Avella et al. [5]. 

Bjӧrklund et al. [6] presented a column generation 

method that effectively exploits the structure of the 

formulations. The method can be used to find optimal 

or near-optimal schedules for networks with arbitrary 

topology and realistic size. They formulated the two 

problems using set covering formulations and they 

derived the column generation method. Hemazroa et al. 

[7] solved an assignment problem by an algorithm 

combining the column generation technique and a 

branch-and-cut scheme. Galiniera and Hertz [8] 

proposed three exact algorithms for solving the large 

set covering problem. Two of them determine minimal 

covers, while the third one produces minimum covers. 

Heuristic versions of these algorithms are also 

proposed and analyzed. 

Some heuristic-based methods are used in the 

literature. Fisher and Rinnooy Kan [9] pointed that 

greedy methods are an important class of one-pass 

constructive heuristics for the SCP, used to rapidly 

generate a feasible solution after a single sweep 

through the problem data. Chvátal [10] proposed a 

widespread constructive heuristic for the SCP which is 

called Chvátal method. At each step, it examines the 

unselected columns and selects the one that reduces the 

total cost by the greatest amount in proportion to the 

number of rows covered by the column, until all rows 

have been covered.  

The Chvátal method has been extensively used to 

produce feasible solutions as a part of more advanced 

algorithms. Examples of such uses include: the primal-

dual approach of Balas and Ho [11], the recursive 

variant of Avis [12], the approximation algorithms of 

Baker [13], and the six greedy approaches investigated 

by Vasko and Wilson [14, 15]. Ablanedo-Rosas and 

Rego [1] introduced a number of normalization rules 

and demonstrated the rules superiority to the classical 

Chvátal rule, especially when solving large scale and 

real-world instances. To challenge very large-scale 

SCP instances, arising from crew scheduling in the 

Italian railway, Caprara et al. [16] designed a 

Lagrangian based heuristic algorithm, named CFT, 

which is one of the most effective techniques for the 

general SCP. Ceria et al. [17] suggested a Lagrangian-

based heuristic for solving large-scale set-covering 

problems arising from crew-scheduling at the Italian 

Railways.  

Umetani and Yagiura [18] compared different 

relaxation heuristics for the SCP. Yagiura et al. [19] 

proposed a 3-flip neighborhood local search which has 

the three characteristics. Naji-Azimi et al. [20] 

proposed a new heuristic algorithm to solve the SCP 

problem. The method is based on the electromagnetism 

metaheuristic approach which, after generating a pool 

of solutions to create the initial population, applies a 

fixed number of local search and movement iterations. 

Caprara et al. [21] compared different exact and 

heuristic algorithms and provided a complete survey of 

the existing literature. 

The other type of solution method is metaheuristic used 

for the SCP. The metaheuristics for the SCP includes 

genetic algorithm [22], simulated annealing algorithm 

[23], tabu search algorithm [24], and ant colony 

optimization [25, 26, 27]. Indirect genetic algorithms 

and parallel genetic algorithms are two variants of the 

well-known genetic metaheuristic approach, proposed 

simultaneously by Aickelin [28], Solar et al. [29] for 

the SCP.  

The randomized priority search approach for general 

and the unicost SCP was proposed by Lan et al. [30] 

for both the. The unicost set covering problem is to 

determine the smallest possible subset of columns that 

also covers sets. If all costs associated with the 

columns set to 1, the general SCP problem will be 

converted to the unicost problem. By considering a 

candidate list, they construct an initial solution with a 

random selection between the best candidate and a 

member of the candidate list. A new metaheuristic 

approach called “randomized gravitational emulation 

search algorithm” for solving large size set covering 

problems has been designed by Raja Balachandar and 

Kannan [31].  

In previous researches in the literature, the exact 

algorithm guarantees to find the optimal solution, but 

for large-scale problem, limited memory and 

computing time are two fundamental problems that 

lead them to become unusable. To cover this problem, 

most researchers use heuristic and hybrid algorithms to 

solve the optimization problem. According to the 

problem characteristics, solving the SCP problem with 

some algorithms are not efficient enough and the 

obtained solutions are poor.  

In this paper for the local branching algorithm is 

developed for the SCP. The design of experiments 

(DOE) approach is used to adjust its parameters. The 

results are compared with the currently published 

method in the literature. The experimental results show 

the efficiency and effectiveness of the proposed 

algorithm. 

The remainder of this paper is organized as follows. 

Section 2 represents the proposed local branching 

method. In Section 3, parameter tuning using DOE is 

described. In Sections 4 the experimental results of the 

algorithm are discussed. Conclusions are presented in 

Section 5. 

 

2. The Proposed Local Branching Algorithm 

for the SCP 
The local branching [32] is a heuristic technique 

that solves mixed-integer programming problems. 

Though the method is exact in nature, it becomes a 
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heuristic by redefining some control parameters. It has 

been designed to provide heuristic solutions of high 

quality, using an MIP solver. The proposed method is 

described based on the local branching algorithm for 

the SCP. 

Let us consider a general 0–1 mixed-integer program  

  

( ) min  c

. :  Ax=b

x 0, 1

x 0

T

j

j

p x

s t

j Ø

j





   

  

 

where the set of variables is partitioned into (β, δ), 

being β the set of binary variables. Given a feasible 

solution x  of (P) and a positive integer parameter k, 

the k−OPT neighborhood N( x , k) of x  is the set of 

feasible solutions of (P) satisfying the additional local 

branching constraint (constraint (4)). 

 

: 1 : 0

( ,  ) (1 )
j j

j j

j x j x

x x x x k
    

       
(4) 

 

In order to describe the constraint (4), the numerical 

example is applied; lets us to consider current x as 

(1,1,0,0)x  .Then constraint (5), which is the local 

branching constraint, is constructed as following. 

 
1 2 3 4( ,  ) (1 ) (1 )x x x x x x k         (5) 

 

Given the incumbent solution x , the solution space can 

be partitioned by constraint (6). 

 
( ,  )  (left branch) or ( ,  ) 1 (right branch)x x k x x k      (6) 

 
The idea is that neighborhood N( x , k) of left branch 

should be sufficiently small to be optimized within a 

short computing time but still large enough to contain 

better solution. The value of parameter k should be 

justified in parameter tuning section. The whole 

method then alternates strategic phases where the 

additional local branching constraint are used to define 

promising solution regions, with tactical phases where 

these regions are explored through a classical 

branching scheme on the variables, using an MIP 

solver to do it.  

The methodology is converted into a heuristic by 

adding several parameters. Two parameters are used to 

put a time limit to the total solving computation time 

and also to each left branch node solving computation 

time, respectively. The algorithm starts with a feasible 

solution 
1x  of (P).  

The left branching constraint 
1( ,  )x x k   is added to 

the model and creating a left branch sub-problem that 

is solved with an MIP solver. If a better solution 
2x  is 

found, then it becomes the new incumbent. The process 

backtracks to the father node, the constraint 

1( ,  )x x k   is replaced by 
1( ,  ) 1x x k   , and a new 

left branch node is created by adding the cut 

2( ,  )x x k   to the model.  

If the solution 
1x  is not improved within the node time 

limit, the size of the neighborhood N(
1x , k) (i.e., the 

right hand side of constraint (4)) is reduced. This can 

be considered an intensification step. A diversification 

mechanism acts when the MIP solver reports 

infeasibility or when it is unable to find a feasible 

solution.  

The diversification consists of enlarging the 

neighborhood of the reference solution x , by 

increasing the right hand side of constraint (4). 

 

 

// The pseudocode for the local branching algorithm 
Read data 
 // Variables initialization 
Initialize k, maxDiv, nodeTimeLimit, totalTimeLimit; 
Let bestSoFar = UB = TL = +∞; 

Let elapsedTime =nodeNumber =divCounter = nodeObjective= 0; 
Let diversify = false; 
Let firstFeasible = true;  
Let rhs = k; 
Create model; 
Solve zero node (TL, UB, firstFeasible); 
If (nodeStatus != Optimal)    { 

            Calculate ( ,  )x x ; 

            While (divCounter <= maxDiv & elapsedTime <= totalTimeLimit    { 

                Add the local branching constraint ( ,  )x x k  ; 

                TL = min(TL, totalTimeLimit - elapsedTime); 
                Solve model (TL, UB, firstFeasible); 
                nodeNumber++; 
                elapsedTime = currentTime - startTime; 
                TL = nodeTimeLimit; 

             Check node status; 
           } 
            TL = totalTimeLimit - elapsedTime; 
            firstFeasible = false; 

            Solve model (TL, UB, firstFeasible); 
} 
Output bestSoFar; 
End. 

 
Fig. 1. The pseudocode for local branching 

algorithm 

 
The local branching algorithm pseudocode is shown in 

Figure 1. In this pseudocode, k, maxDiv, 

nodeTimeLimit, totalTimeLimit, bestSoFar, and 

nodeObjective are neighborhood size, the maximum 

number of diversifications, time limit for each tactical 

branching exploration, overall time limit, best solution, 

and node objective value, respectively.  

In the first part of this pseudocode, variables are 

initialized. The method consists of a main while loop 

which is iterated until either the total time limit or the 

maximum number of diversifications is exceeded. At 

each iteration, a MIP problem is solved that receives on 

input three parameters: the local time limit TL, the 

upper bound UB used to interrupt the optimization as 

soon the best lower bound becomes greater or equal to 

UB, and the binary parameter firstFeasible to be set to 

true for aborting the computation when the first 
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feasible solution is found. MIP solver returns on output 

the optimal/best solution along the final optimization. 

After that node status is checked by using Check node 

status method. diversify indicating whether the next 

required diversification or not.  

Four different states may occur after each call to MIP 

solver: 

 

1. Optimal: the current MIP has been solved to 

proven optimality. In this state, the last local 

branching constraint is reversed 

into ( ,  ) 1x x rhs   , the reference solution x  of 

value UB is updated, the rhs set to value of k and 

the algorithm is iterated. 

2. Infeasible: the current MIP is proven to have no 

feasible solution of cost strictly less than UB, so the 

last local branching constraint is reversed 

into ( ,  ) 1x x rhs   , The rhs and diversify set to 

rhs+k/2 and true, respectively. A diversification is 

implemented depending on the current value of 

diversify. If diversify equals to true, TL and UB set 

to +∞ and the first feasible solution will be 

returned. 

3. Feasible: a solution of cost strictly less than the 

upper bound UB has been found, but the MIP solver 

was not capable of proving its optimality for the 

current problem (due to the imposed time limit or to 

the requirement of aborting the execution after the 

first feasible solution is found).  

In order to cut off the current reference solution x , 

the last local branching constraint ( ,  )x x rhs   is 

replaced by the constraint ( ,  ) 1x x   (unless this 

constraint has been already introduced at step 4, in 

which case the last local branching constraint is 

simply deleted). The reference solution x  of value 

UB is updated. The diversify variable set to false 

and value of k put into rhs variable. 

4. Unknown: no feasible solution of cost strictly less 

than UB has been found within the node time limit, 

but there is no guarantee that such a solution does 

not exist. In this state if diversify equals to true the 

last local branching constraint ( ,  )x x rhs  is 

replaced by ( ,  ) 1x x  in order to escape from the 

current solution, and the upper bound UB and TL 

set to +∞ and rhs=rhs+k/2 and the first feasible 

solution will be returned, else if diversify equals to 

false the constraint ( ,  )x x rhs  is deleted and 

rhs=rhs-k/2 [32]. 

 
3. Parameter Tuning using DOE Approach 

In this section, selecting problems and parameters 

tuning of the local branching algorithm are discussed. 

The parameters of the proposed algorithm are tuned 

using Design of Experiments (DOE) approach and 

Design Expert software.  

An experiment can be described as series of tests in 

which purposeful changes are made to the input 

variables of a system so that we may observe and 

identify the reasons for changes in the output response. 

DOE refers to the process of planning the experiment 

so that appropriate data that can be analyzed by 

statistical methods will be collected, resulting in valid 

and objective conclusions.  

The three basic principles of DOE are replication, 

randomization, and blocking. By replication, we mean 

a repetition of the basic experiment. Two important 

properties of replication are it allows the experimenter 

to obtain an estimate of the experimental error and if 

the sample mean is used to estimate the effect of a 

factor in the experiment, permits the experimenter to 

obtain a more precise estimate of this effect. 

Randomization is that both the allocation of the 

experimental material and the order in which the 

individual runs or trials of the experiment are to be 

performed are randomly determined and makes this 

assumption valid.  

Blocking is a design technique used to improve the 

precision with which comparisons among the factors of 

interest are made. Often blocking is used to reduce or 

eliminate the variability transmitted from nuisance 

factors [33].  

The important parameters in DOE approach are 

response variable, factor, level, treatment and effect. 

The response variable is the measured variable of 

interest. In the analysis of metaheuristics, the typically 

measures are the objective value quality and CPU time 

[34].  

A factor is an independent variable manipulated in an 

experiment because it is thought to affect one or more 

of the response variables. The various values at which 

the factor is set are known as its levels. In 

metaheuristic performance analysis, the factors include 

both the metaheuristic tuning parameters and the most 

important problem characteristics.  

A treatment is a specific combination of factor levels. 

The particular treatments will depend on the particular 

experiment design and on the ranges over which 

factors are varied. An effect is a change in the response 

variable due to a change in one or more factors. Design 

of experiments is a tool can be used to determine 

important parameters and interactions between them. 

Four stages of DOE consist of screening and diagnosis 

of important factors, modeling, optimization and 

assessment. This methodology is called sequential 

experimentation which is used to set the parameters in 

the DOE approach and is used in this paper for local 

branching algorithm [35]. 

Experiments are conducted on eight problems with 

different sizes. In the local branching algorithm, 

solution quality and CPU time are considered as the 

response variables.  

Factors, levels, and the final parameters for solving 

problems are shown in Table 1. These parameters are 

fixed to solve the test instances. 
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Tab. 1. Level factorial design for local branching 

algorithm 

   
Level 

  
Factor Low 

 
High 

 
Final 

parameter 

nodeTimeLimit 
 

50 
 

150 
 

100 
totalTimeLimit 

 
400 

 
1000 

 
800 

maxDiv 
 

3 
 

15 
 

5 

k   15 
 

70 
 

20 
 

4. Experimental Results 
The local branching algorithm is tested on a set of 

87 set covering problems available from the OR 

Library. There are fourteen sets of benchmark 

instances called sets 4, 5, 6, A, B, C, D, E, NRE, NRF, 

NRG, NRH, CLR, CYC and RAIL. Each of sets 4 and 

5 has 10 instances, each of sets 6, A to E, and NRE to 

NRH has five instances, set CLR has four instances, set 

CYC has six instances and RAIL has seven instances. 

The characteristics of these instances such as name, 

number of rows, number of columns, density (the 

percentage of nonzero entries in the SCP matrix), and 

cost range are given in Table 2. 
 

Tab. 2. Characteristics of the test instances 

Instance 
 

No. of 

Rows  
No. of 

Columns  

Density 

(%)  
Cost Range 

Set 4 
 

200 
 

1000 
 

2 
 

[1, 100] 
Set 5 

 
200 

 
2000 

 
2 

 
[1, 100] 

Set 6 
 

200 
 

1000 
 

5 
 

[1, 100] 

Set A 
 

300 
 

3000 
 

2 
 

[1, 100] 
Set B 

 
300 

 
3000 

 
5 

 
[1, 100] 

Set C 
 

400 
 

4000 
 

2 
 

[1, 100] 
Set D 

 
400 

 
4000 

 
5 

 
[1, 100] 

E.1 
 

560 
 

500 
 

20 
 

[1, 1] 

E.2 
 

430 
 

500 
 

20 
 

[1, 1] 
E.3 

 
50 

 
500 

 
20 

 
[1, 1] 

E.4 
 

50 
 

500 
 

20 
 

[1, 1] 

E.5 
 

514 
 

500 
 

20 
 

[1, 1] 
Set NRE 

 
500 

 
5000 

 
10 

 
[1, 100] 

Set NRF 
 

500 
 

5000 
 

20 
 

[1, 100] 

Set NRG 
 

1000 
 

10000 
 

2 
 

[1, 100] 
Set NRH 

 
1000 

 
10000 

 
5 

 
[1, 100] 

CLR.10 
 

511 
 

210 
 

12 
 

[1, 1] 

CLR.11 
 

1023 
 

330 
 

12 
 

[1, 1] 
CLR.12 

 
2047 

 
495 

 
12 

 
[1, 1] 

CLR.13 
 

4095 
 

715 
 

12 
 

[1, 1] 

CYC.06 
 

240 
 

192 
 

2 
 

[1, 1] 
CYC.07 

 
672 

 
448 

 
0.89 

 
[1, 1] 

CYC.08 
 

1792 
 

1024 
 

0.39 
 

[1, 1] 

CYC.09 
 

4608 
 

2304 
 

0.17 
 

[1, 1] 
CYC.10 

 
11520 

 
5120 

 
0.07 

 
[1, 1] 

CYC.11 
 

28160 
 

11264 
 

0.03 
 

[1, 1] 

Rail 507 
 

507 
 

63009 
 

1.3 
 

[1, 2] 
Rail 516 

 
516 

 
47311 

 
1.3 

 
[1, 2] 

Rail 582 
 

582 
 

55515 
 

1.2 
 

[1, 2] 

Rail 2536 
 

2536 
 

1081841 
 

0.4 
 

[1, 2] 
Rail 2586 

 
2586 

 
920683 

 
0.34 

 
[1, 2] 

Rail 4284 
 

4284 
 

1092610 
 

0.24 
 

[1, 2] 

Rail 4872 
 

4872 
 

968672 
 

0.2 
 

[1, 2] 

 

To evaluate the performance of the hybrid algorithm, 

the proposed algorithm is compared with the best 

solution found in the literature in Table 3. The 

surrogate constraint normalization rules [1], 3-flip 

neighborhood local search [19], and Lagrangian-based 

heuristic [17] are selected to compare with the 

proposed local branching algorithm. The Java 

programming language and CPLEX 11 software as an 
MIP solver are used to implement the proposed 
algorithm. The program was run on a personal 
computer with core 2 CPU at 2.66 GHz, 4 GBs of RAM, 
and operating under Microsoft Windows Vista. The 
PROB columns indicate the name of the instances. 
Column SCNR stands for surrogate constraint 
normalization rules, 3-Flip NB column refers to the 3-
flip neighborhood local search and L-Heuristic column 
corresponds to the Lagrangian-based heuristic 
method. Obj. Value in LOCB columns refer to the 
solution found by our proposed local branching 
algorithm and the CPU Time column indicates the 
execution time for finding the solution in seconds. The 
best solution that achieved by the selected methods is 
bolded. IMPROVE column displays the improvement 
percentage of the proposed algorithm relative to the 
best solution. As a solution quality, for each test 
problem the percentage of improvement from the 
best solution is calculated by Equation (7). 
 

( -  )
100

     

Obtained solution Best solution
IMPROVE

Best solution found by other methods
   (7) 

 
Tab. 3. Comparing results 

P
R

O
B

 

 

S
C

N
R

 

 

3
-F

li
p

 N
B

 

 

L
-H

eu
ri

st
ic

 

 L O C B
 

      
O

b
j.

 V
a
lu

e
 

 
 

C
P

U
 T

im
e

 

 
IM

P
R

O
V

E
 (

%
)

 

4.1 

 

461 

 

429 

 

N.A. 

 

429 

 

<1 

 

0.00% 

4.2 

 

564 

 

512 

 

N.A. 

 

512 

 

<1 

 

0.00% 

4.3 

 

559 

 

516 

 

N.A. 

 

516 

 

<1 

 

0.00% 

4.4 

 

541 

 

494 

 

N.A. 

 

494 

 

<1 

 

0.00% 

4.5 

 

573 

 

512 

 

N.A. 

 

512 

 

<1 

 

0.00% 

4.6 

 

586 

 

560 

 

N.A. 

 

560 

 

<1 

 

0.00% 

4.7 

 

461 

 

430 

 

N.A. 

 

430 

 

<1 

 

0.00% 

4.8 

 

538 

 

492 

 

N.A. 

 

492 

 

1 

 

0.00% 

4.9 

 

731 

 

641 

 

N.A. 

 

641 

 

<1 

 

0.00% 

4.1 

 

545 

 

514 

 

N.A. 

 

514 

 

<1 

 

0.00% 

5.1 

 

288 

 

253 

 

N.A. 

 

253 

 

<1 

 

0.00% 

5.2 

 

340 

 

302 

 

N.A. 

 

302 

 

<1 

 

0.00% 

5.3 

 

245 

 

226 

 

N.A. 

 

226 

 

<1 

 

0.00% 

5.4 

 

264 

 

242 

 

N.A. 

 

242 

 

1 

 

0.00% 

5.5 

 

232 

 

211 

 

N.A. 

 

211 

 

<1 

 

0.00% 

5.6 

 

244 

 

213 

 

N.A. 

 

213 

 

<1 

 

0.00% 

5.7 

 

311 

 

293 

 

N.A. 

 

293 

 

<1 

 

0.00% 

5.8 

 

313 

 

288 

 

N.A. 

 

288 

 

<1 

 

0.00% 

5.9 

 

307 

 

279 

 

N.A. 

 

279 

 

<1 

 

0.00% 

5.1 

 

286 

 

265 

 

N.A. 

 

265 

 

<1 

 

0.00% 

6.1 

 

159 

 

138 

 

N.A. 

 

138 

 

<1 

 

0.00% 

6.2 

 

171 

 

146 

 

N.A. 

 

146 

 

<1 

 

0.00% 

6.3 

 

158 

 

145 

 

N.A. 

 

145 

 

<1 

 

0.00% 

6.4 

 

148 

 

131 

 

N.A. 

 

131 

 

<1 

 

0.00% 

6.5 

 

191 

 

161 

 

N.A. 

 

161 

 

<1 

 

0.00% 

A.1 

 

279 

 

253 

 

N.A. 

 

253 

 

2 

 

0.00% 

A.2 

 

278 

 

252 

 

N.A. 

 

252 

 

1 

 

0.00% 

A.3 

 

262 

 

232 

 

N.A. 

 

232 

 

1 

 

0.00% 

A.4 

 

234 

 

234 

 

N.A. 

 

234 

 

<1 

 

0.00% 

A.5 

 

236 

 

236 

 

N.A. 

 

236 

 

<1 

 

0.00% 

B.1 

 

75 

 

69 

 

N.A. 

 

69 

 

<1 

 

0.00% 

B.2 

 

84 

 

76 

 

N.A. 

 

76 

 

2 

 

0.00% 

B.3 

 

85 

 

80 

 

N.A. 

 

80 

 

<1 

 

0.00% 

B.4 

 

89 

 

79 

 

N.A. 

 

79 

 

4 

 

0.00% 

B.5 

 

79 

 

72 

 

N.A. 

 

72 

 

1 

 

0.00% 

C.1 

 

253 

 

227 

 

N.A. 

 

227 

 

1 

 

0.00% 

C.2 

 

250 

 

219 

 

N.A. 

 

219 

 

2 

 

0.00% 

C.3 

 

271 

 

243 

 

N.A. 

 

243 

 

2 

 

0.00% 

C.4 

 

255 

 

219 

 

N.A. 

 

219 

 

1 

 

0.00% 

C.5   231   215   N.A.   215   1   0.00% 
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Tab. 3 (continued) 

PROB  SCNR  
3-Flip 

NB 
 L-Heuristic  

LOCB 

 

  

    

Obj. Value 
  

CPU 

Time 

 

IMPROVE 

(%) 

D.1 

 

69 

 

60 

 

N.A. 

 

60 

 

2 

 

0.00% 

D.2 

 

71 

 
66 

 

N.A. 

 

66 

 

8 

 

0.00% 

D.3 

 

81 

 

72 

 

N.A. 

 

72 

 

3 

 

0.00% 

D.4 

 

67 

 
62 

 

N.A. 

 

62 

 

9 

 

0.00% 

D.5 

 

70 

 
61 

 

N.A. 

 

61 

 

1 

 

0.00% 

E.1 

 

5 

 

N.A. 

 

N.A. 

 

5 

 

1 

 

0.00% 

E.2 

 
5 

 

N.A. 

 

N.A. 

 

5 

 

<1 

 

0.00% 

E.3 

 

5 

 

N.A. 

 

N.A. 

 

5 

 

15 

 

0.00% 

E.4 

 
5 

 

N.A. 

 

N.A. 

 

5 

 

<1 

 

0.00% 

E.5 

 

5 

 

N.A. 

 

N.A. 

 

5 

 

<1 

 

0.00% 

NRE.1 

 

30 

 

29 

 

N.A. 

 

29 

 

40 

 

0.00% 

NRE.2 

 

34 

 
30 

 

N.A. 

 

30 

 

214 

 

0.00% 

NRE.3 

 

30 

 

27 

 

N.A. 

 

27 

 

55 

 

0.00% 

NRE.4 

 

33 

 
28 

 

N.A. 

 

28 

 

72 

 

0.00% 

NRE.5 

 

32 

 

28 

 

N.A. 

 

28 

 

34 

 

0.00% 

NRF.1 

 

16 

 

14 

 

N.A. 

 

14 

 

58 

 

0.00% 

NRF.2 

 

16 

 
15 

 

N.A. 

 

15 

 

51 

 

0.00% 

NRF.3 

 

16 

 

14 

 

N.A. 

 

14 

 

10 

 

0.00% 

NRF.4 

 

16 

 

14 

 

N.A. 

 

14 

 

50 

 

0.00% 

NRF.5 

 

15 

 

13 

 

N.A. 

 

13 

 

73 

 

0.00% 

NRG.1 

 

199 

 
176 

 

176 

 

176 

 

33 

 

0.00% 

NRG.2 

 

171 

 
154 

 

155 

 

154 

 

800 

 

0.00% 

NRG.3 

 

185 

 

166 

 

167 

 

166 

 

800 

 

0.00% 

NRG.4 

 

186 

 

168 

 

170 

 

168 

 

800 

 

0.00% 

NRG.5 

 

192 

 

168 

 

169 

 

168 

 

800 

 

0.00% 

NRH.1 

 

72 

 
63 

 

64 

 

63 

 

800 

 

0.00% 

NRH.2 

 

73 

 
63 

 

64 

 

63 

 

800 

 

0.00% 

NRH.3 

 

66 

 

59 

 

60 

 

59 

 

800 

 

0.00% 

NRH.4 

 

67 

 
58 

 

59 

 

58 

 

800 

 

0.00% 

NRH.5 

 

61 

 

55 

 

55 

 

55 

 

800 

 

0.00% 

CLR.10 

 

29 

 

N.A. 

 

N.A. 

 

25 

 

22 

 

-13.79% 

CLR.11 

 
28 

 

N.A. 

 

N.A. 

 

23 

 

102 

 

-17.86% 

CLR.12 

 
28 

 

N.A. 

 

N.A. 

 

26 

 

800 

 

-7.14% 

CLR.13 

 

32 

 

N.A. 

 

N.A. 

 

26 

 

800 

 

-18.75% 

CYC.06 

 

N.A. 

 

N.A. 

 

N.A. 

 

60 

 

100 

 

0.00% 

CYC.07 

 

N.A. 

 

N.A. 

 

N.A. 

 

144 

 

690 

 

0.00% 

CYC.08 

 

N.A. 

 

N.A. 

 

N.A. 

 

352 

 

650 

 

0.00% 

CYC.09 

 

N.A. 

 

N.A. 

 

N.A. 

 

816 

 

800 

 

0.00% 

CYC.10 

 

N.A. 

 

N.A. 

 

N.A. 

 

1916 

 

800 

 

0.00% 

CYC.11 

 

N.A. 

 

N.A. 

 

N.A. 

 

4268 

 

800 

 

0.00% 

RAIL 

507 

 

197 

 

174 

 

174 

 

174 

 

800 

 

0.00% 

RAIL 

516 

 

194 

 

182 

 

182 

 

182 

 

800 

 

0.00% 

RAIL 

582 

 

236 

 

211 

 

211 

 

211 

 

800 

 

0.00% 

RAIL 

2536 

 

770 

 

691 

 

692 

 

691 

 

800 

 

0.00% 

RAIL 

2586 

 

1064 

 

945 

 

936.1 

 

936 

 

800 

 

0.00% 

RAIL 

4284 

 

1215 

 

1064 

 

1070 

 

1066 

 

800 

 

0.19% 

RAIL 

4872   1698   1528   1534   1530   800   0.13% 

 

In Lagrangian-based heuristic the standard problem are 

categorized and the fixed time limit is set for each 

category. For the small problems, time limit is set in 

3000 seconds and for the medium and large problems, 

time limit is set in 10,000 seconds. In 3-flip 

neighborhood local search, Time limits of the 

algorithms set to 180 seconds for types E–H, 600 

seconds for RAIL 507, 516 and 582, and 18,000 s for 

RAIL 2536–4872.  

The average of IMPROVE column for the proposed 

local branching algorithm is -0.66 percent. The results 

show the efficiency and effectiveness of the proposed 

algorithm. Figure 2 shows the best objective value of 

the local branching algorithm in each branching node 

for CYC.09 problem. 

 
Fig. 2. Convergence of LOCB best objective value 

for CYC.09 

 
5. Conclusions 

This paper presented the local branching algorithm 

for solving the set covering problem. The validity and 

efficiency of the proposed method are put into test over 

a series of computational experiments on fourteen sets 

of standard test problems. To adjust the best parameter 

values in the proposed algorithm, design of 

experiments method is used to find the most 

appropriate parameters. The experimental results show 

the efficiency and effectiveness of the proposed 

algorithm. The average percentage of improvement for 

the proposed algorithm in compare with the best 

solution in the literature is -0.66 percent. The outcome 

is the local branching method clearly outperforms other 

heuristics in the literature, finding the best solution 

until now for most of the instances with a reasonable 

computational effort. These results are very 

encouraging, and suggest that combining mathematical 

programming and metaheuristic techniques is a worth 

pursuing research direction. The application of this 

formulation and solution method in real problems as a 

case study is suggested for future researches. 
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