

A Local Branching Approach for the Set Covering

Problem

M. Yaghini

*
, M.R. Sarmadi & M. Momeni

Masoud Yaghini, Assistant Professor, School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

Mohammadreza Sarmadi, MSc., School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

Mohsen Momeni, MSc., School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

KKEEYYWWOORRDDSS ABSTRACT

The set covering problem (SCP) is a well-known combinatorial

optimization problem. This paper investigates development of a local

branching-based solution approach for the SCP. This solution

strategy is exact in nature, though it is designed to improve the

heuristic behavior of the mixed integer programming solver. The

algorithm parameters are tuned by design of experiments approach.

The proposed method is tested on the several standard instances. The

results show that the algorithm outperforms the best heuristic

approaches found in the literature.

 © 2014 IUST Publication, IJIEPR, Vol. 25, No. 2, All Rights Reserved.

11.. IInnttrroodduuccttiioonn

The set covering problem (SCP) is a classical

combinatorial optimization problem that is central in a

variety of scheduling, routing, and location

applications. The SCP is a main model for locomotive

scheduling in rail transportation, where a given set of

trains has to be covered by a minimum-cost set of

locomotives that each train should be covered by at

least one locomotive.

Let A ()ija be a 0-1 m n matrix with M = {1, 2, …,

m} and N = {1, 2, …, n} denoting, respectively, the

sets of rows and columns of A. Let c ()jc be n-vector

of costs associated with the columns of A. We say that

a column Nj covers a row Mi if 1.ija The problem

is to find a minimum cost column subset S N such

that each row Mi is covered by at least one

**

Corresponding author: Masoud Yaghini
 Email: yaghini@iust.ac.ir

 Paper first received Nov. 25, 2012, and in accepted form May

 29, 2013.

column S.j

Let ()jx x be the column vector of

variables 1jx if S,j 0jx otherwise. The classic

mathematical formulation for the SCP is as follows:

 ()= j j

j N

Minimize z x c x

 (1)

 Subject to

1ij j

j N

a x i M

 (2)

 0, 1 jx j N (3)

Objective function (1) calculates the cost. Constraint

(2) ensures that each row is covered by at least one

column. Constraint (3) ensures the binary nature of

decision variables [1].

The set covering problem is known to be NP-hard [2].

It has been considered in the literature as a basic

formulation for many real-world optimization

Heuristics, set covering

 problem,

Local branching algorithm,

Design of experiments

JJuunnee 22001144,, VVoolluummee 2255,, NNuummbbeerr 22

pppp.. 9955--110022

hhttttpp::////IIJJIIEEPPRR..iiuusstt..aacc..iirr//

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh

 pISSN: 2008-4889

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

25
-0

1-
11

]

 1 / 8

https://www.iust.ac.ir/ijieen/article-1-464-en.html

M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set … 96

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

problems, therefore it is well-known for its numerous

applications. Many algorithms have been developed to

solve this problem. The literature covers exact,

heuristic and metaheuristic approaches to solve the

SCP.

Exact algorithms are mostly based on brand-and-bound

and branch-and-cut [3, 4]. In recent years some works

are presented in this issue such as Avella et al. [5].

Bjӧrklund et al. [6] presented a column generation

method that effectively exploits the structure of the

formulations. The method can be used to find optimal

or near-optimal schedules for networks with arbitrary

topology and realistic size. They formulated the two

problems using set covering formulations and they

derived the column generation method. Hemazroa et al.

[7] solved an assignment problem by an algorithm

combining the column generation technique and a

branch-and-cut scheme. Galiniera and Hertz [8]

proposed three exact algorithms for solving the large

set covering problem. Two of them determine minimal

covers, while the third one produces minimum covers.

Heuristic versions of these algorithms are also

proposed and analyzed.

Some heuristic-based methods are used in the

literature. Fisher and Rinnooy Kan [9] pointed that

greedy methods are an important class of one-pass

constructive heuristics for the SCP, used to rapidly

generate a feasible solution after a single sweep

through the problem data. Chvátal [10] proposed a

widespread constructive heuristic for the SCP which is

called Chvátal method. At each step, it examines the

unselected columns and selects the one that reduces the

total cost by the greatest amount in proportion to the

number of rows covered by the column, until all rows

have been covered.

The Chvátal method has been extensively used to

produce feasible solutions as a part of more advanced

algorithms. Examples of such uses include: the primal-

dual approach of Balas and Ho [11], the recursive

variant of Avis [12], the approximation algorithms of

Baker [13], and the six greedy approaches investigated

by Vasko and Wilson [14, 15]. Ablanedo-Rosas and

Rego [1] introduced a number of normalization rules

and demonstrated the rules superiority to the classical

Chvátal rule, especially when solving large scale and

real-world instances. To challenge very large-scale

SCP instances, arising from crew scheduling in the

Italian railway, Caprara et al. [16] designed a

Lagrangian based heuristic algorithm, named CFT,

which is one of the most effective techniques for the

general SCP. Ceria et al. [17] suggested a Lagrangian-

based heuristic for solving large-scale set-covering

problems arising from crew-scheduling at the Italian

Railways.

Umetani and Yagiura [18] compared different

relaxation heuristics for the SCP. Yagiura et al. [19]

proposed a 3-flip neighborhood local search which has

the three characteristics. Naji-Azimi et al. [20]

proposed a new heuristic algorithm to solve the SCP

problem. The method is based on the electromagnetism

metaheuristic approach which, after generating a pool

of solutions to create the initial population, applies a

fixed number of local search and movement iterations.

Caprara et al. [21] compared different exact and

heuristic algorithms and provided a complete survey of

the existing literature.

The other type of solution method is metaheuristic used

for the SCP. The metaheuristics for the SCP includes

genetic algorithm [22], simulated annealing algorithm

[23], tabu search algorithm [24], and ant colony

optimization [25, 26, 27]. Indirect genetic algorithms

and parallel genetic algorithms are two variants of the

well-known genetic metaheuristic approach, proposed

simultaneously by Aickelin [28], Solar et al. [29] for

the SCP.

The randomized priority search approach for general

and the unicost SCP was proposed by Lan et al. [30]

for both the. The unicost set covering problem is to

determine the smallest possible subset of columns that

also covers sets. If all costs associated with the

columns set to 1, the general SCP problem will be

converted to the unicost problem. By considering a

candidate list, they construct an initial solution with a

random selection between the best candidate and a

member of the candidate list. A new metaheuristic

approach called “randomized gravitational emulation

search algorithm” for solving large size set covering

problems has been designed by Raja Balachandar and

Kannan [31].

In previous researches in the literature, the exact

algorithm guarantees to find the optimal solution, but

for large-scale problem, limited memory and

computing time are two fundamental problems that

lead them to become unusable. To cover this problem,

most researchers use heuristic and hybrid algorithms to

solve the optimization problem. According to the

problem characteristics, solving the SCP problem with

some algorithms are not efficient enough and the

obtained solutions are poor.

In this paper for the local branching algorithm is

developed for the SCP. The design of experiments

(DOE) approach is used to adjust its parameters. The

results are compared with the currently published

method in the literature. The experimental results show

the efficiency and effectiveness of the proposed

algorithm.

The remainder of this paper is organized as follows.

Section 2 represents the proposed local branching

method. In Section 3, parameter tuning using DOE is

described. In Sections 4 the experimental results of the

algorithm are discussed. Conclusions are presented in

Section 5.

2. The Proposed Local Branching Algorithm

for the SCP
The local branching [32] is a heuristic technique

that solves mixed-integer programming problems.

Though the method is exact in nature, it becomes a

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

25
-0

1-
11

]

 2 / 8

https://www.iust.ac.ir/ijieen/article-1-464-en.html

97 M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

heuristic by redefining some control parameters. It has

been designed to provide heuristic solutions of high

quality, using an MIP solver. The proposed method is

described based on the local branching algorithm for

the SCP.

Let us consider a general 0–1 mixed-integer program

() min c

. : Ax=b

x 0, 1

x 0

T

j

j

p x

s t

j Ø

j

where the set of variables is partitioned into (β, δ),

being β the set of binary variables. Given a feasible

solution x of (P) and a positive integer parameter k,

the k−OPT neighborhood N(x , k) of x is the set of

feasible solutions of (P) satisfying the additional local

branching constraint (constraint (4)).

: 1 : 0

(,) (1)
j j

j j

j x j x

x x x x k

(4)

In order to describe the constraint (4), the numerical

example is applied; lets us to consider current x as

(1,1,0,0)x .Then constraint (5), which is the local

branching constraint, is constructed as following.

1 2 3 4(,) (1) (1)x x x x x x k (5)

Given the incumbent solution x , the solution space can

be partitioned by constraint (6).

(,) (left branch) or (,) 1 (right branch)x x k x x k (6)

The idea is that neighborhood N(x , k) of left branch

should be sufficiently small to be optimized within a

short computing time but still large enough to contain

better solution. The value of parameter k should be

justified in parameter tuning section. The whole

method then alternates strategic phases where the

additional local branching constraint are used to define

promising solution regions, with tactical phases where

these regions are explored through a classical

branching scheme on the variables, using an MIP

solver to do it.

The methodology is converted into a heuristic by

adding several parameters. Two parameters are used to

put a time limit to the total solving computation time

and also to each left branch node solving computation

time, respectively. The algorithm starts with a feasible

solution
1x of (P).

The left branching constraint
1(,)x x k is added to

the model and creating a left branch sub-problem that

is solved with an MIP solver. If a better solution
2x is

found, then it becomes the new incumbent. The process

backtracks to the father node, the constraint

1(,)x x k is replaced by
1(,) 1x x k , and a new

left branch node is created by adding the cut

2(,)x x k to the model.

If the solution
1x is not improved within the node time

limit, the size of the neighborhood N(
1x , k) (i.e., the

right hand side of constraint (4)) is reduced. This can

be considered an intensification step. A diversification

mechanism acts when the MIP solver reports

infeasibility or when it is unable to find a feasible

solution.

The diversification consists of enlarging the

neighborhood of the reference solution x , by

increasing the right hand side of constraint (4).

// The pseudocode for the local branching algorithm
Read data
 // Variables initialization
Initialize k, maxDiv, nodeTimeLimit, totalTimeLimit;
Let bestSoFar = UB = TL = +∞;

Let elapsedTime =nodeNumber =divCounter = nodeObjective= 0;
Let diversify = false;
Let firstFeasible = true;
Let rhs = k;
Create model;
Solve zero node (TL, UB, firstFeasible);
If (nodeStatus != Optimal) {

 Calculate (,)x x ;

 While (divCounter <= maxDiv & elapsedTime <= totalTimeLimit {

 Add the local branching constraint (,)x x k ;

 TL = min(TL, totalTimeLimit - elapsedTime);
 Solve model (TL, UB, firstFeasible);
 nodeNumber++;
 elapsedTime = currentTime - startTime;
 TL = nodeTimeLimit;

 Check node status;
 }
 TL = totalTimeLimit - elapsedTime;
 firstFeasible = false;

 Solve model (TL, UB, firstFeasible);
}
Output bestSoFar;
End.

Fig. 1. The pseudocode for local branching

algorithm

The local branching algorithm pseudocode is shown in

Figure 1. In this pseudocode, k, maxDiv,

nodeTimeLimit, totalTimeLimit, bestSoFar, and

nodeObjective are neighborhood size, the maximum

number of diversifications, time limit for each tactical

branching exploration, overall time limit, best solution,

and node objective value, respectively.

In the first part of this pseudocode, variables are

initialized. The method consists of a main while loop

which is iterated until either the total time limit or the

maximum number of diversifications is exceeded. At

each iteration, a MIP problem is solved that receives on

input three parameters: the local time limit TL, the

upper bound UB used to interrupt the optimization as

soon the best lower bound becomes greater or equal to

UB, and the binary parameter firstFeasible to be set to

true for aborting the computation when the first

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

25
-0

1-
11

]

 3 / 8

https://www.iust.ac.ir/ijieen/article-1-464-en.html

M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set … 98

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

feasible solution is found. MIP solver returns on output

the optimal/best solution along the final optimization.

After that node status is checked by using Check node

status method. diversify indicating whether the next

required diversification or not.

Four different states may occur after each call to MIP

solver:

1. Optimal: the current MIP has been solved to

proven optimality. In this state, the last local

branching constraint is reversed

into (,) 1x x rhs , the reference solution x of

value UB is updated, the rhs set to value of k and

the algorithm is iterated.

2. Infeasible: the current MIP is proven to have no

feasible solution of cost strictly less than UB, so the

last local branching constraint is reversed

into (,) 1x x rhs , The rhs and diversify set to

rhs+k/2 and true, respectively. A diversification is

implemented depending on the current value of

diversify. If diversify equals to true, TL and UB set

to +∞ and the first feasible solution will be

returned.

3. Feasible: a solution of cost strictly less than the

upper bound UB has been found, but the MIP solver

was not capable of proving its optimality for the

current problem (due to the imposed time limit or to

the requirement of aborting the execution after the

first feasible solution is found).

In order to cut off the current reference solution x ,

the last local branching constraint (,)x x rhs is

replaced by the constraint (,) 1x x (unless this

constraint has been already introduced at step 4, in

which case the last local branching constraint is

simply deleted). The reference solution x of value

UB is updated. The diversify variable set to false

and value of k put into rhs variable.

4. Unknown: no feasible solution of cost strictly less

than UB has been found within the node time limit,

but there is no guarantee that such a solution does

not exist. In this state if diversify equals to true the

last local branching constraint (,)x x rhs is

replaced by (,) 1x x in order to escape from the

current solution, and the upper bound UB and TL

set to +∞ and rhs=rhs+k/2 and the first feasible

solution will be returned, else if diversify equals to

false the constraint (,)x x rhs is deleted and

rhs=rhs-k/2 [32].

3. Parameter Tuning using DOE Approach

In this section, selecting problems and parameters

tuning of the local branching algorithm are discussed.

The parameters of the proposed algorithm are tuned

using Design of Experiments (DOE) approach and

Design Expert software.

An experiment can be described as series of tests in

which purposeful changes are made to the input

variables of a system so that we may observe and

identify the reasons for changes in the output response.

DOE refers to the process of planning the experiment

so that appropriate data that can be analyzed by

statistical methods will be collected, resulting in valid

and objective conclusions.

The three basic principles of DOE are replication,

randomization, and blocking. By replication, we mean

a repetition of the basic experiment. Two important

properties of replication are it allows the experimenter

to obtain an estimate of the experimental error and if

the sample mean is used to estimate the effect of a

factor in the experiment, permits the experimenter to

obtain a more precise estimate of this effect.

Randomization is that both the allocation of the

experimental material and the order in which the

individual runs or trials of the experiment are to be

performed are randomly determined and makes this

assumption valid.

Blocking is a design technique used to improve the

precision with which comparisons among the factors of

interest are made. Often blocking is used to reduce or

eliminate the variability transmitted from nuisance

factors [33].

The important parameters in DOE approach are

response variable, factor, level, treatment and effect.

The response variable is the measured variable of

interest. In the analysis of metaheuristics, the typically

measures are the objective value quality and CPU time

[34].

A factor is an independent variable manipulated in an

experiment because it is thought to affect one or more

of the response variables. The various values at which

the factor is set are known as its levels. In

metaheuristic performance analysis, the factors include

both the metaheuristic tuning parameters and the most

important problem characteristics.

A treatment is a specific combination of factor levels.

The particular treatments will depend on the particular

experiment design and on the ranges over which

factors are varied. An effect is a change in the response

variable due to a change in one or more factors. Design

of experiments is a tool can be used to determine

important parameters and interactions between them.

Four stages of DOE consist of screening and diagnosis

of important factors, modeling, optimization and

assessment. This methodology is called sequential

experimentation which is used to set the parameters in

the DOE approach and is used in this paper for local

branching algorithm [35].

Experiments are conducted on eight problems with

different sizes. In the local branching algorithm,

solution quality and CPU time are considered as the

response variables.

Factors, levels, and the final parameters for solving

problems are shown in Table 1. These parameters are

fixed to solve the test instances.

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

25
-0

1-
11

]

 4 / 8

https://www.iust.ac.ir/ijieen/article-1-464-en.html

99 M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

Tab. 1. Level factorial design for local branching

algorithm

Level

Factor Low

High

Final

parameter

nodeTimeLimit

50

150

100
totalTimeLimit

400

1000

800

maxDiv

3

15

5

k 15

70

20

4. Experimental Results
The local branching algorithm is tested on a set of

87 set covering problems available from the OR

Library. There are fourteen sets of benchmark

instances called sets 4, 5, 6, A, B, C, D, E, NRE, NRF,

NRG, NRH, CLR, CYC and RAIL. Each of sets 4 and

5 has 10 instances, each of sets 6, A to E, and NRE to

NRH has five instances, set CLR has four instances, set

CYC has six instances and RAIL has seven instances.

The characteristics of these instances such as name,

number of rows, number of columns, density (the

percentage of nonzero entries in the SCP matrix), and

cost range are given in Table 2.

Tab. 2. Characteristics of the test instances

Instance

No. of

Rows
No. of

Columns

Density

(%)
Cost Range

Set 4

200

1000

2

[1, 100]
Set 5

200

2000

2

[1, 100]

Set 6

200

1000

5

[1, 100]

Set A

300

3000

2

[1, 100]
Set B

300

3000

5

[1, 100]

Set C

400

4000

2

[1, 100]
Set D

400

4000

5

[1, 100]

E.1

560

500

20

[1, 1]

E.2

430

500

20

[1, 1]
E.3

50

500

20

[1, 1]

E.4

50

500

20

[1, 1]

E.5

514

500

20

[1, 1]
Set NRE

500

5000

10

[1, 100]

Set NRF

500

5000

20

[1, 100]

Set NRG

1000

10000

2

[1, 100]
Set NRH

1000

10000

5

[1, 100]

CLR.10

511

210

12

[1, 1]

CLR.11

1023

330

12

[1, 1]
CLR.12

2047

495

12

[1, 1]

CLR.13

4095

715

12

[1, 1]

CYC.06

240

192

2

[1, 1]
CYC.07

672

448

0.89

[1, 1]

CYC.08

1792

1024

0.39

[1, 1]

CYC.09

4608

2304

0.17

[1, 1]
CYC.10

11520

5120

0.07

[1, 1]

CYC.11

28160

11264

0.03

[1, 1]

Rail 507

507

63009

1.3

[1, 2]
Rail 516

516

47311

1.3

[1, 2]

Rail 582

582

55515

1.2

[1, 2]

Rail 2536

2536

1081841

0.4

[1, 2]
Rail 2586

2586

920683

0.34

[1, 2]

Rail 4284

4284

1092610

0.24

[1, 2]

Rail 4872

4872

968672

0.2

[1, 2]

To evaluate the performance of the hybrid algorithm,

the proposed algorithm is compared with the best

solution found in the literature in Table 3. The

surrogate constraint normalization rules [1], 3-flip

neighborhood local search [19], and Lagrangian-based

heuristic [17] are selected to compare with the

proposed local branching algorithm. The Java

programming language and CPLEX 11 software as an
MIP solver are used to implement the proposed
algorithm. The program was run on a personal
computer with core 2 CPU at 2.66 GHz, 4 GBs of RAM,
and operating under Microsoft Windows Vista. The
PROB columns indicate the name of the instances.
Column SCNR stands for surrogate constraint
normalization rules, 3-Flip NB column refers to the 3-
flip neighborhood local search and L-Heuristic column
corresponds to the Lagrangian-based heuristic
method. Obj. Value in LOCB columns refer to the
solution found by our proposed local branching
algorithm and the CPU Time column indicates the
execution time for finding the solution in seconds. The
best solution that achieved by the selected methods is
bolded. IMPROVE column displays the improvement
percentage of the proposed algorithm relative to the
best solution. As a solution quality, for each test
problem the percentage of improvement from the
best solution is calculated by Equation (7).

(-)
100

Obtained solution Best solution
IMPROVE

Best solution found by other methods
 (7)

Tab. 3. Comparing results

P
R

O
B

S
C

N
R

3
-F

li
p

 N
B

L
-H

eu
ri

st
ic

 L O C B

O

b
j.

 V
a
lu

e

C
P

U
 T

im
e

IM

P
R

O
V

E
 (

%
)

4.1

461

429

N.A.

429

<1

0.00%

4.2

564

512

N.A.

512

<1

0.00%

4.3

559

516

N.A.

516

<1

0.00%

4.4

541

494

N.A.

494

<1

0.00%

4.5

573

512

N.A.

512

<1

0.00%

4.6

586

560

N.A.

560

<1

0.00%

4.7

461

430

N.A.

430

<1

0.00%

4.8

538

492

N.A.

492

1

0.00%

4.9

731

641

N.A.

641

<1

0.00%

4.1

545

514

N.A.

514

<1

0.00%

5.1

288

253

N.A.

253

<1

0.00%

5.2

340

302

N.A.

302

<1

0.00%

5.3

245

226

N.A.

226

<1

0.00%

5.4

264

242

N.A.

242

1

0.00%

5.5

232

211

N.A.

211

<1

0.00%

5.6

244

213

N.A.

213

<1

0.00%

5.7

311

293

N.A.

293

<1

0.00%

5.8

313

288

N.A.

288

<1

0.00%

5.9

307

279

N.A.

279

<1

0.00%

5.1

286

265

N.A.

265

<1

0.00%

6.1

159

138

N.A.

138

<1

0.00%

6.2

171

146

N.A.

146

<1

0.00%

6.3

158

145

N.A.

145

<1

0.00%

6.4

148

131

N.A.

131

<1

0.00%

6.5

191

161

N.A.

161

<1

0.00%

A.1

279

253

N.A.

253

2

0.00%

A.2

278

252

N.A.

252

1

0.00%

A.3

262

232

N.A.

232

1

0.00%

A.4

234

234

N.A.

234

<1

0.00%

A.5

236

236

N.A.

236

<1

0.00%

B.1

75

69

N.A.

69

<1

0.00%

B.2

84

76

N.A.

76

2

0.00%

B.3

85

80

N.A.

80

<1

0.00%

B.4

89

79

N.A.

79

4

0.00%

B.5

79

72

N.A.

72

1

0.00%

C.1

253

227

N.A.

227

1

0.00%

C.2

250

219

N.A.

219

2

0.00%

C.3

271

243

N.A.

243

2

0.00%

C.4

255

219

N.A.

219

1

0.00%

C.5 231 215 N.A. 215 1 0.00%

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

25
-0

1-
11

]

 5 / 8

https://www.iust.ac.ir/ijieen/article-1-464-en.html

M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set … 100

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

Tab. 3 (continued)

PROB SCNR
3-Flip

NB
 L-Heuristic

LOCB

Obj. Value

CPU

Time

IMPROVE

(%)

D.1

69

60

N.A.

60

2

0.00%

D.2

71

66

N.A.

66

8

0.00%

D.3

81

72

N.A.

72

3

0.00%

D.4

67

62

N.A.

62

9

0.00%

D.5

70

61

N.A.

61

1

0.00%

E.1

5

N.A.

N.A.

5

1

0.00%

E.2

5

N.A.

N.A.

5

<1

0.00%

E.3

5

N.A.

N.A.

5

15

0.00%

E.4

5

N.A.

N.A.

5

<1

0.00%

E.5

5

N.A.

N.A.

5

<1

0.00%

NRE.1

30

29

N.A.

29

40

0.00%

NRE.2

34

30

N.A.

30

214

0.00%

NRE.3

30

27

N.A.

27

55

0.00%

NRE.4

33

28

N.A.

28

72

0.00%

NRE.5

32

28

N.A.

28

34

0.00%

NRF.1

16

14

N.A.

14

58

0.00%

NRF.2

16

15

N.A.

15

51

0.00%

NRF.3

16

14

N.A.

14

10

0.00%

NRF.4

16

14

N.A.

14

50

0.00%

NRF.5

15

13

N.A.

13

73

0.00%

NRG.1

199

176

176

176

33

0.00%

NRG.2

171

154

155

154

800

0.00%

NRG.3

185

166

167

166

800

0.00%

NRG.4

186

168

170

168

800

0.00%

NRG.5

192

168

169

168

800

0.00%

NRH.1

72

63

64

63

800

0.00%

NRH.2

73

63

64

63

800

0.00%

NRH.3

66

59

60

59

800

0.00%

NRH.4

67

58

59

58

800

0.00%

NRH.5

61

55

55

55

800

0.00%

CLR.10

29

N.A.

N.A.

25

22

-13.79%

CLR.11

28

N.A.

N.A.

23

102

-17.86%

CLR.12

28

N.A.

N.A.

26

800

-7.14%

CLR.13

32

N.A.

N.A.

26

800

-18.75%

CYC.06

N.A.

N.A.

N.A.

60

100

0.00%

CYC.07

N.A.

N.A.

N.A.

144

690

0.00%

CYC.08

N.A.

N.A.

N.A.

352

650

0.00%

CYC.09

N.A.

N.A.

N.A.

816

800

0.00%

CYC.10

N.A.

N.A.

N.A.

1916

800

0.00%

CYC.11

N.A.

N.A.

N.A.

4268

800

0.00%

RAIL

507

197

174

174

174

800

0.00%

RAIL

516

194

182

182

182

800

0.00%

RAIL

582

236

211

211

211

800

0.00%

RAIL

2536

770

691

692

691

800

0.00%

RAIL

2586

1064

945

936.1

936

800

0.00%

RAIL

4284

1215

1064

1070

1066

800

0.19%

RAIL

4872 1698 1528 1534 1530 800 0.13%

In Lagrangian-based heuristic the standard problem are

categorized and the fixed time limit is set for each

category. For the small problems, time limit is set in

3000 seconds and for the medium and large problems,

time limit is set in 10,000 seconds. In 3-flip

neighborhood local search, Time limits of the

algorithms set to 180 seconds for types E–H, 600

seconds for RAIL 507, 516 and 582, and 18,000 s for

RAIL 2536–4872.

The average of IMPROVE column for the proposed

local branching algorithm is -0.66 percent. The results

show the efficiency and effectiveness of the proposed

algorithm. Figure 2 shows the best objective value of

the local branching algorithm in each branching node

for CYC.09 problem.

Fig. 2. Convergence of LOCB best objective value

for CYC.09

5. Conclusions

This paper presented the local branching algorithm

for solving the set covering problem. The validity and

efficiency of the proposed method are put into test over

a series of computational experiments on fourteen sets

of standard test problems. To adjust the best parameter

values in the proposed algorithm, design of

experiments method is used to find the most

appropriate parameters. The experimental results show

the efficiency and effectiveness of the proposed

algorithm. The average percentage of improvement for

the proposed algorithm in compare with the best

solution in the literature is -0.66 percent. The outcome

is the local branching method clearly outperforms other

heuristics in the literature, finding the best solution

until now for most of the instances with a reasonable

computational effort. These results are very

encouraging, and suggest that combining mathematical

programming and metaheuristic techniques is a worth

pursuing research direction. The application of this

formulation and solution method in real problems as a

case study is suggested for future researches.

References

[1] Ablanedo-Rosas, J.H., Rego, C., “Surrogate

Constraint Normalization for the Set Covering

Problem”, European Journal of Operational Research,

Vol. 205, 2010, pp. 540–551.

[2] Garey, M.R., Johnson, D.S., Computers and

Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman, San Francisco, 1979.

[3] Balas, E., Carrera, M.C., “A Dynamic Subgradient-

Based Branch-and-Bound Procedure for Set

Covering”, Operations Research, Vol. 44, 1996, pp.

875–890.

[4] Fisher, M., Kedia, P., “Optimal Solution of Set

Covering/Partitioning Problems Using Dual

Heuristics”, Management Science, Vol. 36, 1990, pp.

674–688.

[5] Avella, P., Boccia, M., Vasilyev, I., “Computational

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

25
-0

1-
11

]

 6 / 8

https://www.iust.ac.ir/ijieen/article-1-464-en.html

101 M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

Experience with General Cutting Planes for the Set

Covering Problem”, Operations Research Letters,

Vol. 37, 2009, pp. 16–20.

[6] Bjӧ rklund, P., Värbrand, P., Yuan, D., “A Column

Generation Method for Spatial TDMA Scheduling in

ad Hoc Networks” Ad Hoc Networks, Vol. 2, 2004,

pp. 405–418.

[7] Hemazroa, T.D., Jaumardb, B., Marcotte, O., “A

Column Generation and Branch-and-Cut Algorithm

for the Channel Assignment Problem”, Computers &

Operations Research, Vol. 35, 2008, pp. 1204–1226.

[8] Galinier, P., Hertz, A., “Solution Techniques for the

Large Set Covering Problem”, Discrete Applied

Mathematics, Vol. 155, 2007, pp. 312–326.

[9] Fisher, M.L., Rinnooy Kan, A.H.G., “The Design,

Analysis and Implementation of Heuristics”,

Management Science, Vol. 34, 1988, pp. 263–265.

[10] Chvátal, V., “A greedy Heuristic for the Set Covering

Problem”, Mathematics of Operations Research, Vol.

4, 1979, pp. 233–235.

[11] Balas, E., Ho, A., “Set covering algorithms using

cutting planes, heuristics, and subgradient

optimization: a computational study”, Mathematical

Programming, Vol. 12, 1980, pp. 37–60.

[12] Avis, D., “A Note on Some Computationally Difficult

Set Covering Problems”, Mathematical Programming,

Vol. 18, 1980, pp. 138–145.

[13] Baker, E.K., “Efficient Heuristic Algorithms for the

Weighted Set Covering Problem”, Computers &

Operations Research, Vol. 8, 1981, pp. 303–310.

[14] Vasko, F.J., Wilson, G.R., “Using a Facility Location

Algorithm to Solve Large Set Covering Problems”,

Operations Research Letters, Vol. 3, 1984, pp. 85–90.

[15] Vasko, F.J., Wilson, G.R., “An Efficient Heuristic for

Large Set Covering Problems”, Naval Research

Logistics Quarterly, Vol. 31, 1984, pp. 163–171.

[16] Caprara, A., Fischetti, M., Toth, P., “A Heuristic

Method for the Set Covering Problem”, Operations

Research, Vol. 47, 1999, pp. 730–743.

[17] Ceria, S., Nobili, P., Sassano, A., “Lagrangian-Based

Heuristic for Large-Scale Set Covering Problems”,

Mathematical Programming, Vol. 81, 1998, pp. 215–

228.

[18] Umetani, S., Yagiura, M., “Relaxation Heuristics for

the Set Covering Problem”, Journal of the Operations

Research Society of Japan, Vol. 50, 2007, pp. 350–

375.

[19] Yagiura, M., Kishida, M., Ibaraki, T., “A 3-Flip

Neighborhood Local Search for the Set Covering

Problem”, European Journal of Operational

Research, Vol. 172, 2006, pp. 472–499.

[20] Naji-Azimi, Z., Toth, P., Galli, L., “An

Electromagnetism Metaheuristic for the Unicost Set

Covering Problem”, European Journal of Operational

Research, Vol. 205, 2010, pp. 290–300.

[21] Caprara, A., Fischetti, M., Toth, P., “Algorithms for

the Set Covering Problem”, Annals of Operations

Research, Vol. 98, 2000, pp. 353–371.

[22] Beasley, J.E., Chu, P.C., “A Genetic Algorithm for the

Set Covering Problem”, European Journal of

Operational Research, Vol. 94, 1996, pp. 392–404.

[23] Brusco, M.J., Jacobs, L.W., Thompson, G.M., “A

Morphing Procedure to Supplement a Simulated

Annealing Heuristic for Cost- and Coverage-

Correlated Set-Covering Problems”, Annals of

Operations Research, Vol. 86, 1999, pp. 611–627.

[24] Caserta, M., Tabu search-based metaheuristic

algorithm for large-scale set covering problems. In:

Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr,

W.J., Hartl, R.F., Reimann, M. (eds.), Metaheuristics:

Progress in Complex Systems Optimization. New

York, Springer, 2007, pp. 43–63.

[25] Lessing, L., Dumitrescu, I., Stützle, T. “A

Comparison Between ACO Algorithms for the Set

Covering Problem”, Lecture Notes in Computer

Science, Vol. 3172, 2004, pp.1–12.

[26] Ren, Z., Feng, Z., Zhang, Z., “New Ideas for Applying

Ant Colony Optimization to the Set Covering

Problem”, Computers & Industrial Engineering, Vol.

58, 2010, pp. 774–784.

[27] Gouwanda, D., Ponnambalam, S.G., “Evolutionary

Search Techniques to Solve Set Covering Problems”,

Proceedings of World Academy of Science,

Engineering and Technology, Vol. 29, 2008, pp. 20–

25.

[28] Aickelin, U., “An Indirect Genetic Algorithm for Set

Covering Problems”, Journal of the Operational

Research Society, Vol. 53, 2002, pp. 1118–1126.

[29] Solar, M., Parada, V., Urrutia, R., “A Parallel Genetic

Algorithm to Solve the Set Covering Problem”,

Computers & Operations Research, Vol. 29, 2002, pp.

1221–1235.

[30] Lan, G., DePuy, G.W., Whitehouse, G.E., “An

Effective and Simple Heuristic for the Set Covering

Problem”, European Journal of Operational Research,

Vol. 176, 2007, pp. 1387–1403.

[31] Raja Balachandar, S., Kannan, K., “A Meta-Heuristic

Algorithm for Set Covering Problem Based on

Gravity”, International Journal of Computational and

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

25
-0

1-
11

]

 7 / 8

http://econpapers.repec.org/article/eeeejores/
http://econpapers.repec.org/article/eeeejores/
https://www.iust.ac.ir/ijieen/article-1-464-en.html

M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set … 102

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

Mathematical Sciences, Vol. 4, 2010, pp. 223–228.

[32] Fischetti, M., Lodi, A., “Local Branching”,

Mathematical Programming, Vol. 98, 2003, pp. 23–

47.

[33] Montgomery, D.C., Design and Analysis of

Experiments, John Wiley & Sons, 2009.

[34] Adenso-Díaz, B., Laguna, M., “Fine-Tuning of

Algorithms using Fractional Experimental Designs

and Local Search”, Operations Research, Vol. 54,

2006, pp. 99–114.

[35] Ridge, E., Design of Experiments for the Tuning of

Optimization Algorithms. PhD thesis, Department of

Computer Science, University of York, United

Kingdom, 2007.

 [
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n
20

25
-0

1-
11

]

Powered by TCPDF (www.tcpdf.org)

 8 / 8

https://www.iust.ac.ir/ijieen/article-1-464-en.html
http://www.tcpdf.org

