Search published articles


Showing 2 results for Bamdad

Laya Olfat, Maghsoud Amiri, Jjahanyar Bamdad Soofi, Mostafa Ebrahimpour Azbari,
Volume 25, Issue 2 (IIJEPR 2014)
Abstract

Having a comprehensive evaluation model with reliable data is useful to improve performance of supply chain. In this paper, according to the nature of supply chain, a model is presented that able to evaluate the performance of the supply chain by a network data envelopment analysis model and by using the financial, intellectual capital (knowledge base), collaboration and responsiveness factors of the supply chain. At the first step, indicators were determined and explained by explanatory Factor Analysis. Then, Network Data Envelopment Analysis (NDEA) model was used. This paper is the result of research related to supply chain of pharmaceutical companies in Tehran Stock Exchange and 115 experts and senior executives have been questioned as sample. The results showed that responsiveness latent variable had the highest correlation with supply chain performance and collaborative, financial and intellectual capital (knowledge base) latent variables were respectively after that. Four of the twenty eight supply chains which were studied obtained 1 as the highest performance rate and the lowest observed performance was 0.43.
Mehrnaz Piroozbakht, Sedigh Raissi, Meysam Rafei, Shahrooz Bamdad,
Volume 33, Issue 2 (IJIEPR 2022)
Abstract

In a system, prediction of remaining useful lifetime (RUL) of servicing before reaching to a specified breakdown threshold is a very important practical issue, and research in this field is still regarded as an appreciated research gap. Operational environment of an equipment is not constant and changes regarding to stresses and shocks. These random environmental factors accelerate system deterioration by affecting on the level or rate of degradation path. The present study focuses on providing a practical operational guideline to estimate the RUL of a system with general degradation path after receiving a shock which only affects on the degradation level. Due to exact estimation of the shock arrival times and measuring the magnitudes of future shocks to investigate shock effects on RUL is almost impossible in the real world and laborious in practice, in this research a new procedure based on total defect size monitored in the constant inspection periods and Accelerated Factor (AF) is proposed to analyze RUL of the system. A Micro-Electro-Mechanical system (MEMS) is used as an example and the results show the applicability of the proposed approach.

Page 1 from 1