Search published articles


Showing 2 results for Bozorgi-Amiri

Armaghn Shadman, Ali Bozorgi-Amiri, Donya Rahmani,
Volume 28, Issue 2 (IJIEPR 2017)
Abstract

Today, many companies after achieving improvements in manufacturing operations are focused on the improvement of distribution systems and have long been a strong tendency to optimize the distribution network in order to reduce logistics costs that the debate has become challenging. Improve the flow of materials, an activity considered essential to increase customer satisfaction. In this study, we benefit cross docking method for effective control of cargo flow to reduce inventory and improve customer satisfaction. Also every supply chain is faced with risks that threaten its ability to work effectively. Many of these risks are not in control but can cause great disruption and costs for the supply chain process. In this study we are looking for a model to collect and deliver the demands for the limited capacity vehicle in terms of disruption risk finally presented a compromised planning process. In fact, we propose a framework which can consider all the problems on the crisis situation for decision-making in these conditions, by preparing a mathematical model and software gams for the following situation in a case study. In the first step, the results presented in mode of a two-level planning then the problem expressed in form of a multi-objective optimization model and the results was explained.


Fatemeh Bayatloo, Ali Bozorgi-Amiri,
Volume 29, Issue 4 (IJIEPR 2018)
Abstract

Development of every society is incumbent upon energy sector’s technological and economic effectiveness. The electricity industry is a growing and needs to have a better performance to effectively cover the demand. The industry requires a balance between cost and efficiency through careful design and planning. In this paper, a two-stage stochastic programming model is presented for the design of electricity supply chain networks. The proposed network consists of power stations, transmission lines, substations, and demand points. While minimizing costs and maximizing effectiveness of the grid, this paper seeks to determine time and location of establishing new facilities as well as capacity planning for facilities. We use chance constraint method to satisfy the uncertain demand with high probability. The proposed model is validated by a case study on Southern Khorasan Province’s power grid network, the computational results show that the reliability rate is a crucial factor which greatly effects costs and demand coverage. 

Page 1 from 1