Search published articles


Showing 3 results for Ghazanfari

M. Ghazanfari, K. Noghondarian, A. Alaedini,
Volume 19, Issue 4 (IJIE 2008)
Abstract

  Although control charts are very common to monitoring process changes, they usually do not indicate the real time of the changes. Identifying the real time of the process changes is known as change-point estimation problem. There are a number of change point models in the literature however most of the existing approaches are dedicated to normal processes. In this paper we propose a novel approach based on clustering techniques to estimate Shewhart control chart change-point when a sustained shift is occurrs in the process mean. For this purpose we devise a new clustering mechanism, a new similarity measure and a new objective function. The proposed approach is not only capable of detecting process change-points, but also automatically estimates the true values of the out-of-control parameters of the process. We also compare the performance of the proposed approach with existing methods.


, , ,
Volume 20, Issue 1 (IJIEPR 2009)
Abstract

Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show the relations between essential components in complex systems. In this paper, a novel learning method is proposed to construct FCMs based on historical data and by using meta-heuristic: Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS). Implementation of the proposed method has demonstrated via real data of a purchase system in order to simulate the system’s behavior.
M. Yaghini, N. Ghazanfari,
Volume 21, Issue 2 (IJIEPR 2010)
Abstract

  The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the optimization property of tabu search and the local search capability of k-means algorithm together. The contribution of proposed algorithm is to produce tabu space for escaping from the trap of local optima and finding better solutions effectively. The Tabu-KM algorithm is tested on several simulated and standard datasets and its performance is compared with k-means, simulated annealing, tabu search, genetic algorithm, and ant colony optimization algorithms. The experimental results on simulated and standard test problems denote the robustness and efficiency of the algorithm and confirm that the proposed method is a suitable choice for solving data clustering problems.



Page 1 from 1