Showing 2 results for Reisi
Mohammad Reisi, Ghasem Moslehi,
Volume 24, Issue 4 (IJIEPR 2013)
Abstract
Increasing competition in the air transport market has intensified active airlines’ efforts to keep their market share by attaching due importance to cost management aimed at reduced final prices. Crew costs are second only to fuel costs on the cost list of airline companies. So, this paper attempts to investigate the cockpit crew pairing problem. The set partitioning problem has been used for modelling the problem at hand and, because it is classified in large scale problems, the column generation approach has been used to solve LP relaxation of the set partitioning model. Our focus will be on solving the column generation sub-problem. For this purpose, two algorithms, named SPRCF and SPRCD, have been developed based on the shortest path with resource constraint algorithms. Their efficiency in solving some problem instances has been tested and the results have been compared with those of an algorithm for crew pairing problem reported in the literature. Results indicate the high efficiency of the proposed algorithms in solving problem instances with up to 632 flight legs in a reasonable time.
Sima Boosaiedi, Mohammad Reisi-Nafchi, Ghasem Moslehi,
Volume 33, Issue 2 (IJIEPR 2022)
Abstract
Operating rooms have become the most important areas in hospitals because of the scarcity and cost of resources. The present study investigates operating room scheduling and rescheduling considering the priority of surgical patients in a specialized hospital. The ultimate purpose of scheduling is to minimize patient waiting time, surgeon idle time between surgeries, and penalties for deviations from operating room preferences. A mathematical programming model is presented to solve the problem. Because the problem is strongly NP-hard, two heuristic algorithms are presented. A heuristic algorithm based on a mathematical programming model with local search obtains near-optimal solutions for all the samples. The average relative deviation of this algorithm is 0.02%. In continuous, heuristic algorithms performance have been investigated by increasing the number of patients and reduce the number of recovery beds. Next, a rescheduling heuristic algorithm is presented to deal with real-time situations. This algorithm presents fewer changes resulting from rescheduling in comparison with the scheduling problem.