Search published articles


Showing 3 results for Shakeri

Mohammad Ali Shafia, Arnoosh Shakeri,
Volume 20, Issue 4 (IJIEPR 2010)
Abstract

This paper aims at emphasizing the importance of establishing a Project Management (PM) system in Technology Transfer (TT) processes and developing a conceptual framework for it. TT is an important process in Technology Management affairs for all enterprises.  Most of the time, lack of a particular concentration on technical, commercial and legal aspects of TT process, leads to mismanagement of other aspects of transferring project, like Time and Project Integration. This situation may lead to failure and loss of many opportunities in transfer process. To overcome this problem, inputs, outputs and activities of a typical TT processes are identified and based on these components, a conceptual framework for managing this project & prevent the loss is developed using Project Management models and methodologies.
B. Moradi, H. Shakeri, S. Namdarzangeneh,
Volume 23, Issue 1 (IJIEPR 2012)
Abstract

Until now single values of IRR are traditionally used to estimate the time value of cash flows. Since uncertainty exists in estimating cost data, the resulting decision may not be reliable. The most commonly cited drawbacks to using the internal rate of return in evaluatton of deterministic cash flow streams is the possibility of multiple conflicting internal rates of return. In this paper we present a fuzzy methodology for solving problems of multiple IRR in any type of streams. Utilization of fuzzy cash flow allows modeling of uncertainty in estimating cost data. The approach of

-cut is to decrease the range of the final fuzzy set by increasing the degree of membership. For each fuzzy IRR in an optimum -cut, and an obtained present value of each stream, it is possible to decide on acceptance or rejection of a project according to the type of each stream (borrowing or investing). The upper bound of -cut is the worst case for borrowing and the lower bound of -cut is the worst case for investing. It is shown that both the internal rate of return and the present value are important in decision making and by analyzing the sensitivity of these values relative to the -cut variation, one can see the behavior of the project and choose a narrower fuzzy range.

Parviz Fattahi, Zohreh Shakeri Kebria,
Volume 31, Issue 1 (IJIEPR 2020)
Abstract

In this paper, a new model of hub locating has been solved considering reliability and importance of flow congestion on hub nodes in a dynamic environment. Each of nodes considered as hubs and their communication paths with other non-hubs nodes have specific reliability. In order to reduce input flow to any hub and avoid creation unsuitable environmental and traffic conditions in that area, efficiency capacity is allocated to each hub, which is subject to a penalty in case of exceeding this amount. Another capability of this model is the ability of deciding whether hubs are active or inactive in each period, so hub facilities can be established or closed due to different conditions (such as changes in demand, legislative, etc.). The model is non-linear and bi-objective that the first goal is reducing transportation costs, hub rental fees and extra flow congestion penalties on hub nodes and the second goal is to increase the minimum designed network reliability. After linearization of the model, using ε-constraint method, optimal boundary is obtained. Also, to demonstrate the performance of the model, we use IAD dataset for solving problem. To evaluate the model, sensitivity analysis is presented for some of important parameters of the model.

Page 1 from 1