P.k Shahabadkar, J.s Sujit Kumar , K.s Prashant ,
Volume 22, Issue 4 (IJIEPR 2011)
Abstract
There has been a recent development and explosion of interest among academicians across a wide range of disciplines in the use of virtual Class room. Utilization of the virtual class room as a laboratory experimentation for teaching and learning has increased significantly in recent years as development tools for web based applications have become easier to use and computers have become more capable and less expensive. But, does the virtual class-room improve students learning? Herein we describe the results of two experiments conducted on sections of a Manufacturing and Operation Management course [MIME - 3240] at one of the Colleges of Technology in the Sultanate of Oman during fall semester. Two experiments were designed to determine if student learning of Manufacturing and Operation Management course was significantly affected by two treatments: 1) Virtual class room environment for the students of section S2 and 2) Real Class-room environment for students of section S1. The actual final scores of students of section S1 and S2 were compared in order to determine the effectiveness of virtual class room on student learning for the Manufacturing and Operation Management course.
In this study Web-based virtual Class room (WVC) is developed to communicate, to share and to disseminate knowledge from the teacher to student. Further, in this study web based tools are also used to create, store, and manage contents of class room instructions and course material .
Sujit Kumar Jha,
Volume 23, Issue 3 (IJIEPR 2012)
Abstract
This paper presents an overview of new approaches in rapid product development in production networks from design points of view. The manufacturing industries are changing their focus to global sourcing as a means to improve performance and enhance competitiveness. Some partnerships created with this strategy improve product development through collaborative design. With the advent of e-Commerce, a new set of collaborative applications integrated to the firms’ IT infrastructure allow a direct interaction between the firm and its suppliers, having an impact of negotiations. The globalization of the market necessitates the reduction of time-to-market, mainly due to shorter product life cycle. The computing and communication have become indispensable in every aspect of product development and design. The paper describes the network that directly links designer capabilities and with customers and manufacturing division. The networks focuses the three major forces that will affect the design community, namely, speed of decision, expansion of scope and degree of concurrency. Due to evolution of production networks, it has become possible to obtain the mass production within a key short time, using emerging technology that affect the speed and efficiency of product development using a pool of efficient designers and product managers.
Sujit Kumar Jha,
Volume 27, Issue 2 (IJIEPR 2016)
Abstract
Manufacturing process frequently employs optimization of machining parameters in order to improve product quality as well as to enhance productivity. The material removal rate is a significant indicator of the productivity and cost efficiency of the process. Taguchi method has been implemented for assessing favorable (optimal) machining condition during the machining of nylon by considering three important cutting parameters like cutting speed, feed rate and depth of cut during machining on CNC. The objective of the paper is to find out, which process parameters having more impacts on material removal rate during turning operation on nylon using analysis of variance (ANOVA). An Orthogonal array has been constructed to find the optimal levels of the turning parameters and further signal-to-noise (S/N) ratio has been computed to construct the analysis of variance table. The results of ANOVA shown that feed rate has most significant factor on MRR compare to cutting speed and depth of cut for nylon. The confirmation experiments have conducted to validate the optimal cutting parameters and improvement of MRR from initial conditions is 555.56%.