Siamak Noori, Kaveh Taghizadeh,
Volume 29, Issue 3 (IJIEPR 2018)
Abstract
The Multi-Mode Resource Constrained Project Scheduling Problem (MMRCPSP) is one of the most important problems in project scheduling context. The MMRCPSP consists of activities to be scheduled subject to precedence and resource constraints. The effort needed in order to accomplish activities in the MMRCPSP is a discrete function of job performing modes. However, MMRCPSP is a basic model with a rather too restrictive assumptions to be applied practically. Therefore, there are many extensions over basic MMRCPSP model in terms of objective functions, resource constraints, and solving procedures. This research is aiming at fulfilling tow ambitions. First, to collect researches related MMRCPSP and to classify them based on a framework consisting of six distinct classes. Second, to indicate current trends and potential areas of future research. In order to fulfill the second goal a new mathematical method is proposed and applied which identify recent trends and gaps in a systematic manner.
Jafar Esmaeeli, Maghsoud Amiri, Houshang Taghizadeh,
Volume 32, Issue 2 (IJIEPR 2021)
Abstract
So far, numerous studies have been developed to evaluate the performance of “Decision-Making Units (DMUs)” through “Data Envelopment Analysis (DEA)” and “Network Data Envelopment Analysis (NDEA)” models in different places, but most of these studies have measured the performance of DMUs by efficiency criteria. The productivity is considered as a key factor in the success and development of DMUs and its evaluation is more comprehensive than efficiency evaluation. Recently, studies have been developed to evaluate the productivity of DMUs through the mentioned models but firstly, the number of these studies especially in NDEA models is scarce, and secondly, productivity in these studies is often evaluated through the “productivity indexes”. These indexes require at least two time periods and also the two important elements of efficiency and effectiveness in these studies are not significantly evident. So, the purpose of this study is to develop a new approach in the NDEA models using “Multi-Objective Programming (MOP)” method in order to measure productivity of DMUs through efficiency and effectiveness “simultaneously, in one stage, in a period, and interdependently”. “Simultaneous and single-stage” study provides the advantage of sensitivity analysis in the model. One case study demonstrates application of the proposed approach in the branches of a Bank. Using proposed approach revealed that it is possible for a branch to be efficient by considering its subdivisions separately but not be efficient by considering the conjunction between its subdivisions. In addition, a branch may be efficient by considering the conjunction between its subdivisions but not be productive. Efficient branches are not necessarily productive, but productive branches are also efficient.