Showing 4 results for Zaher
Mir. B. Aryanezhad, M.j. Tarokh, M.n. Mokhtarian, F. Zaheri,
Volume 22, Issue 1 (IJIEPR 2011)
Abstract
Multiple criteria decision making (MCDM) problem is one of the famous different kinds of decision making problems. In more cases in real situations, determining the exact values for MCDM problems is difficult or impossible. So, the values of alternatives with respect to the criteria or / and the values of criteria weights, are considered as fuzzy values (fuzzy numbers). In such conditions, the conventional crisp approaches for solving MCDM problems tend to be less effective for dealing with the imprecise or vagueness nature of the linguistic assessments. In this situation, the fuzzy MCDM methods are applied for solving MCDM problems. In this paper, we propose a fuzzy TOPSIS (for Order Preference by Similarity to Ideal Solution) method based on left and right scores for fuzzy MCDM problems. To show the applicability of the proposed method, two numerical examples are presented. As a result, our proposed method is precise, easy use and practical for solving MCDM problem with fuzzy data. Moreover, the proposed method considers the decision makers (DMs) preference in the decision making process. It seems that the proposed fuzzy TOPSIS method is flexible and easy to use and has a low computational volume .
Ali Zaheri, Mahdi Rojhani, Sandra F. Rowe,
Volume 33, Issue 1 (IJIEPR 2022)
Abstract
The Project Management Body of Knowledge (PMBOK) is a widely used model of project management based on prior experience. This standard does not distinguish between small and large projects, but small projects, with their limited schedules and budgets, face challenges using the extensive structure proposed by this standard. It has been suggested that the standard can be adapted to each project within its specifications; however, the tailoring procedures are complex, time-consuming, and at times impossible to apply to small projects. The present study examined whether or not the PMBOK is an appropriate model for small projects. To address this issue, a questionnaire was prepared and sent to 134 professional project managers. Analysis of the data confirmed that the assumption that PMBOK is a challenge to small projects was not contradicted. Most participants agreed that the procedure should be tailored to prioritize the standard tools and guiding techniques, in addition to the knowledge areas, for small projects.
Islam Gomaa, Hegazy Zaher, Naglaa Ragaa Saeid, Heba Sayed ,
Volume 34, Issue 1 (IJIEPR 2023)
Abstract
Researchers in many fields, such as operations research, computer science, AI engineering, and mathematical engineering, extra, are increasingly adopting nature-inspired metaheuristic algorithms because of their simplicity and flexibility. Natural metaheuristic algorithms are based on two essential terms: exploration (diversification) and exploitation (intensification). The success and limitations of these algorithms are reliant on the tuning and control of their parameters. When it comes to tackling real optimization problems, the Gorilla Troop Optimizer (GTO) is an extremely effective algorithm that is inspired by the social behavior of gorilla troops. Three operators of the original GTO algorithm are committed to exploration, and the other two operators are dedicated to exploitation. Even though the superiority of GTO algorithm to several metaheuristic algorithms, it needs to improve the balance between the exploration process and the exploitation process to ensure an accurate estimate of the global optimum. For this reason, a Novel Enhanced version of GTO (NEGTO), which focuses on the correct balance of exploration and exploitation, has been proposed. This paper suggests a novel modification on the original GTO to enhance the exploration process and exploitation process respectively, through introducing a dynamic controlling parameter and improving some equations in the original algorithm based on the new controlling parameter. A computational experiment is conducted on a set of well-known benchmark test functions used to show that NEGTO outperforms the standard GTO and other well-known algorithms in terms of efficiency, effectiveness, and stability. The proposed NEGTO for solving global optimization problems outperforms the original GTO in most unimodal benchmark test functions and most multimodal benchmark test functions, a wider search space and more intensification search of the global optimal solution are the main advantages of the proposed NEGTO.
Rabie Mosaad Rabie, Hegazy Zaher, Naglaa Ragaa Saied, Heba Sayed,
Volume 35, Issue 1 (IJIEPR 2024)
Abstract
Harris Hawks Optimization (HHO) algorithm, which is a new metaheuristic algorithm that has shown promising results in comparison to other optimization methods. The surprise pounce is a cooperative behavior and chasing style exhibited by Harris' Hawks in nature. To address the limitations of HHO, specifically its susceptibility to local optima and lack of population diversity, a modified version called Modified Harris Hawks Optimization (MHHO) is proposed for solving global optimization problems. A mutation-selection approach is utilized in the proposed Modified Harris Hawks Optimization (MHHO) algorithm. Through systematic experiments conducted on 23 benchmark functions, the results have demonstrated that the MHHO algorithm offers a more reliable solution compared to other established algorithms. The MHHO algorithm exhibits superior performance to the basic HHO, as evidenced by its superior average values and standard deviations. Additionally, it achieves the smallest average values among other algorithms while also improving the convergence speed. The experiments demonstrate competitive results compared to other meta-heuristic algorithms, which provide evidence that MHHO outperforms others in terms of optimization performance.