M.h. Fazel Zarandi, M. Zarinbal,
Volume 23, Issue 4 (IJIEPR 2012)
Abstract
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-2 fuzzy clustering is the most preferred method. In recent years, neurology and neuroscience have been significantly advanced by imaging tools, which typically involve vast amount of data and many uncertainties. Therefore, Type-2 fuzzy clustering methods could process these images more efficient and could provide better performance. The focus of this paper is to segment the brain Magnetic Resonance Imaging (MRI) in to essential clusters based on Type-2 Possibilistic C-Mean (PCM) method. The results show that using Type-2 PCM method provides better results.
Mohammad Mehdi Dehdar, Mustafa Jahangoshai Rezaee, Marzieh Zarinbal, Hamidreza Izadbakhsh,
Volume 29, Issue 4 (IJIEPR 2018)
Abstract
Human-based quality control reduces the accuracy of this process. Also, the speed of decision making in some industries is very important. For removing these limitations in human-based quality control, in this paper, the design of an expert system for automatic and intelligent quality control is investigated. In fact, using an intelligent system, the accuracy in quality control is increased. It requires the knowledge of experts in quality control and design of expert systems based on the knowledge and information provided by human and equipment. For this purpose, Fuzzy Inference System (FIS) and Image Processing approach are integrated. In this expert system, the input information is the images of the products and the results of processing on images for quality control are as output. At first, they may be noisy images; the pre-processing is done and then a fuzzy system is used to be processed. In this fuzzy system, according to the images, the rules are designed to extract the specific features that are required. At second, after the required attributes are extracted, the control chart is used in terms of quality. Furthermore, the empirical case study of copper rods industry is presented to show the abilities of the proposed approach.