Showing 31 results for Design
Hossein Akbaripour, Ellips Masehian,
Volume 24, Issue 2 (6-2013)
Abstract
The main advantage of heuristic or metaheuristic algorithms compared to exact optimization methods is their ability in handling large-scale instances within a reasonable time, albeit at the expense of losing a guarantee for achieving the optimal solution. Therefore, metaheuristic techniques are appropriate choices for solving NP-hard problems to near optimality. Since the parameters of heuristic and metaheuristic algorithms have a great influence on their effectiveness and efficiency, parameter tuning and calibration has gained importance. In this paper a new approach for robust parameter tuning of heuristics and metaheuristics is proposed, which is based on a combination of Design of Experiments (DOE), Signal to Noise (S/N) ratio, Shannon entropy, and VIKOR methods, which not only considers the solution quality or the number of fitness function evaluations, but also aims to minimize the running time. In order to evaluate the performance of the suggested approach, a computational analysis has been performed on the Simulated Annealing (SA) and Genetic Algorithms (GA) methods, which have been successfully applied in solving respectively the n-queens and the Uncapacitated Single Allocation Hub Location combinatorial problems. Extensive experimental results showed that by using the presented approach the average number of iterations and the average running time of the SA were respectively improved 12 and 10.2 times compared to the un-tuned SA. Also, the quality of certain solutions was improved in the tuned GA, while the average running time was 2.5 times faster compared to the un-tuned GA.
Ashwin S. Chatpalliwar, Vishwas S. Deshpande, Jayant P. Modak, Nileshsingh V. Thakur,
Volume 24, Issue 3 (9-2013)
Abstract
This paper mainly focuses the study and analysis of the existing contributions related to the Biodiesel production. It, firstly, discuss the key issues related contributions which include chemical process, reactor designing, plantation, blending and applications. Next, it summarizes the analysis of the other prominent contributions related to process model, design, production, cost, optimization, feasibility, safety, effects, challenges and future of the Biodiesel. It also presents the discussion on the open issues in Biodiesel. Secondly, an approach is suggested for the design of the Biodiesel manufacturing plant in view of cost and capacity. The suggested approach is based on the mathematical model. This paper provides the brief study of Biodiesel production and plant design and it can be helpful to the beginners in the domain of renewable energy research.
Masoud Yaghini, Mohsen Momeni, Mohammadreza Momeni Sarmadi,
Volume 25, Issue 2 (5-2014)
Abstract
The set covering problem (SCP) is a well-known combinatorial optimization problem. This paper investigates development of a local branching approach for the SCP. This solution strategy is exact in nature, though it is designed to improve the heuristic behavior of the mixed integer programming solver. The algorithm parameters are tuned by design of experiments approach. The proposed method is tested on the several standard instances. The results show that the algorithm outperforms the best heuristic approaches found in the literature.
Mr Aliakbar Hasani, Mr Seyed Hessameddin Zegordi,
Volume 26, Issue 1 (3-2015)
Abstract
In this study, an optimization model is proposed to design a Global Supply Chain (GSC) for a medical device manufacturer under disruption in the presence of pre-existing competitors and price inelasticity of demand. Therefore, static competition between the distributors’ facilities to more efficiently gain a further share in market of Economic Cooperation Organization trade agreement (ECOTA) is considered. This competition condition is affected by disruption occurrence. The aim of the proposed model is to maximize the expected net after-tax profit of GSC under disruption and normal situation at the same time. To effectively deal with disruption, some practical strategies are adopted in the design of GSC network. The uncertainty of the business environment is modeled using the robust optimization technique based on the concept of uncertainty budget. To tackle the proposed Mixed-Integer Nonlinear Programming (MINLP) model, a hybrid Taguchi-based Memetic Algorithm (MA) with an adaptive population size is developed that incorporates a customized Adaptive Large Neighborhood Search (ALNS) as its local search heuristic. A fitness landscape analysis is used to improve the systematic procedure of neighborhood selection in the proposed ALNS. A numerical example and computational results illustrate the efficiency of the proposed model and algorithm in dealing with global disruptions under uncertainty and competition pressure.
Mahdi Karbasian, Batool Mohebi, Bijan Khayambashi, Mohsen Chesh Berah, Mehdi Moradi,
Volume 26, Issue 4 (11-2015)
Abstract
The present paper aims to investigate the effects of modularity and the layout of subsystems and parts of a complex system on its maintainability. For this purpose, four objective functions have been considered simultaneously: I) maximizing the level of accordance between system design and optimum modularity design,II) maximizing the level of accessibility and the maintenance space required,III) maximizing the providing of distance requirement and IV) minimizing the layout space. The first objective function has been put forward for the first time in the present paper and in it, the optimum system modularity design was determined using the Design Structure Matrix (DSM) technique.The second objective function is combined with the concept of Level of Repair Analysis (LoRA) and developed. Simultaneous optimization of the above-mentioned objective functions has not been considered in previous studies. The multi objective problem which has been put forward was applied on a laser range finder containing 17 subsystems and the modularity and optimum layout was determined using a multi objective particle swarm optimization (MOPSO) algorithm.
Arash Nobari, Amir Saman Kheirkhah, Maryam Esmaeili,
Volume 27, Issue 4 (12-2016)
Abstract
Flexible and dynamic supply chain network design problem has been studied by many researchers during past years. Since integration of short-term and long-term decisions in strategic planning leads to more reliable plans, in this paper a multi-objective model for a sustainable closed-loop supply chain network design problem is proposed. The planning horizon of this model contains multiple strategic periods so that the structure of supply chain can be changed dynamically during the planning horizon. Furthermore, in order to have an integrated design, several short-term decisions are considered besides strategic network design decision. One of these short-term decisions is determining selling price and buying price in the forward and reverse logistics of supply chain, respectively. Finally, an augmented e-constraint method is used to transform the problem to a single-objective model and an imperialist competitive algorithm is presented to solve large scale problems. The results’ analysis indicates the efficiency of the proposed model for the integrated and dynamic supply chain network design problem.
Ebrahim Teimoury, Farshad Saeedi, Ahmad Makui,
Volume 28, Issue 1 (3-2017)
Abstract
Recently, urbanization has been expanded rapidly in the world and a number of metropolitan areas have been appeared with a population of more than 10 million people. Because of dense population in metropolitan and consequently increasing the delivery of goods and services, there has been a lot of problems including traffic congestion, air pollution, accidents and high energy consumption. This made some complexities in distribution of urban goods; Therefore, it is essential to provide creative solutions to overcome these complexities. City logistics models can be effective in solving these complexities.
In this paper, concepts and definitions related to city logistics are explained to provide a mathematical model in order to design city logistics distribution network aim at minimizing response times. This objective is effective for goods and emergency services, especially in times of crisis and also for goods that are delivered as soon as possible. This is a three-level network and has been used in modeling of queuing theory. To validate the model, a numerical example has been established and results of the model have been explained using BARON solver in Gams software. Finally, conclusions and recommendations for future research are presented.
Reza Babazadeh, Reza Tavakkoli-Moghaddam,
Volume 28, Issue 2 (6-2017)
Abstract
A teaching-learning-based optimization (TLBO) algorithm is a new population-based algorithm applied in some applications in the literature successfully. Moreover, a genetic algorithm (GA) is a popular tool employed widely in many disciplines of engineering. In this paper, a hybrid GA-TLBO algorithm is proposed for the capacitated three-stage supply chain network design (SCND) problem. The SCND problem as a strategic level decision-making problem in supply chain management is an NP-hard class of computational complexity. To escape infeasible solutions emerged in the problem of interest due to realistic constraints, combination of a random key and priority-base encoding scheme is also used. To assess the quality of the proposed hybrid GA-TLBO algorithm, some numerical examples are conducted. Then, the results are compared with the GA, TLBO, differential evolution (DE) and branch-and -bound algorithms. Finally, the conclusion is provided.
Mohammad Saber Fallah Nezhad, Vida Golbafian, Hasan Rasay, Yusef Shamstabar,
Volume 28, Issue 3 (9-2017)
Abstract
CCC-r control chart is a monitoring technique for high yield processes. It is based on the analysis of the number of inspected items until observing a specific number of defective items. One of the assumptions in implementing CCC-r chart that has a significant effect on the design of the control chart is that the inspection is perfect. However, in reality, due to the multiple reasons, the inspection is exposed to errors. In this paper, we study the economic-statistical design of CCC-r charts when the inspection is imperfect. Minimization of the average cost per produced item is considered as the objective function. The economic objective function, modified consumer risk, and modified producer risk are simultaneously considered, and then the optimal value of r parameter is selected.
Arash Khosravi, Seyed Reza Hejazi, Shahab Sadri,
Volume 28, Issue 4 (11-2017)
Abstract
Managing income is a considerable dimension in supply chain management in current economic atmosphere. Real world situation makes it inevitable not to design or redesign supply chain. Redesign will take place as costs increase or new services for customers’ new demands should be provided. Pricing is an important fragment of Supply chain due to two reasons: first, represents revenue based each product and second, based on supply-demand relations enables Supply chain to provide demands by making suitable changes in facilities and their capacities. In this study, Benders decomposition approach used to solve multi-product, multi-echelon and multi-period supply chain network redesign including price-sensitive customers.
Mojtaba Torkinejad, Iraj Mahdavi, Nezam Mahdavi-Amiri, Mirmehdi Seyed Esfahani,
Volume 28, Issue 4 (11-2017)
Abstract
Considering the high costs of the implementation and maintenance of gas distribution networks in urban areas, optimal design of such networks is vital. Today, urban gas networks are implemented within a tree structure. These networks receive gas from City Gate Stations (CGS) and deliver it to the consumers. This study presents a comprehensive model based on Mixed Integer Nonlinear Programming (MINLP) for the design of urban gas networks taking into account topological limitations, gas pressure and velocity limitations and environmental limitations. An Ant Colony Optimization (ACO) algorithm is presented for solving the problem and the results obtained by an implementation of ACO algorithm are compared with the ones obtained through an iterative method to demonstrate the efficiency of ACO algorithm. A case study of a real situation (gas distribution in Kelardasht, Iran) affirms the efficacy of the proposed approach.
Hassan Sadeghi Naeini, Koustuv Dalal, Hashem Mosaddad, Karmegam Karuppiah,
Volume 29, Issue 3 (9-2018)
Abstract
Introduction: This review article has tried to explore the economic effectiveness of ergonomics.
Methods: In this review, PubMed, EBSCO, and Web of Science were selected to find the related articles based on two keywords of ‘ergonomics’ and ‘economics’. Eleven full-text articles (1 in PubMed, 8 in EBSCO, and 2 in Web.Sci.) were included in the study.
Results: Articles show that ergonomics interventions have an association with economics and productivity; however 3 out of 11 articles didn’t show a clear interconnection between ergonomics and economic benefits. All of the reviewed articles conducted at workplaces and also were related to occupational ergonomics, but in a single case, the ergonomics product design was reflected a cost-benefit approach.
Discussion: The role of a healthy workforce and ergonomics design regard to both employees’ efficiency and business growth, are often neglected. According to reviewed papers, the role of ergonomics in green economics toward sustainability is inevitable. However, there are some challenges to persuade the industrial sectors’ managers about the economics side of ergonomics in which limited documents and the lack of ergonomics-economics models and procedures are critical.
Conclusion: This review emphasized on at least two approaches. One of them is the necessities of publishing papers, including valid economics model about industrial ergonomics, another one is to develop some economics tools to confirm the benefits of ergonomic product design. If some appropriate economic models or techniques merge into ergonomics intervention projects, whether industrial ergonomics or product design, more feasible and better outcomes will gain in which both of the employees and customers are satisfied.
Rassoul Noorossana, Mahdi Shayganmanesh, Farhad Pazhuheian, Mohammad Hosein Rahimi,
Volume 31, Issue 3 (9-2020)
Abstract
Laser marking is an advanced technology in material processing that has a permanent effect on materials. With the use of laser engraving, the material is removed, layer by layer, in the laser path through melting displacement, ablation, and evaporation. Al-SiC is a metal matrix composite, widely used in aerospace, automobile manufacturing, and electronic packaging. Accumulative roll bonding (ARB) is one of the newest manufacturing processes of metal matrix composites, which leads to the production of materials with high strength, low weight, and great environmental compatibility. In this paper, we present the laser engraving of Al-SiC composite samples, which are produced through ARB process, using Q-switched Nd:YAG laser. A 2k factorial design is used to analyze the effect of factors, including assistant gas flow, distance of sample from beam focus location (distance), pulse repetition frequency, and pumping current on the qualitative characteristics of engraved zone (width, depth and contrast of engraved zone). Desirability function is used for optimization. Results based on experimental data indicate the optimal setting of input factors which leads to pre-specified target values of responses.
Farzaneh Paknejad, Seyed Hashem Mosaddad, Hassan Sadeghi Naeini,
Volume 32, Issue 1 (1-2021)
Abstract
Optimal consumption is known as a nowadays concern which is related to scientific improvement, development of technology, product design, design and development based on standards, proper distribution of resources and, consequently, advancement in other less considered areas. Considering marketing, people are persuaded to purchase and consume the products throughout the gamification principles, even if this is more than the users’ needs. This cross-sectional study focused on consumption patterns and gamification. The main objectives of this research was to provide a modified pattern of purchasing and consuming bread through persuading the families. This study was done by simulated gamification patterns and assessment of participants’ feedback. The data was collected through literature review and interviews from a sample consisting of 25 students in the primary school. The results showed that gamification as a main factor was an appropriate stimulus for persuading purchasing and consumption behavior modification. However, the addition of mechanics in a relationship is not enough per se; reinforcement is required to enhance the quality of the perceived experience.
Mohsen Khezeli, Esmaeil Najafi, Mohammad Haji Molana, Masoud Seidi,
Volume 32, Issue 2 (6-2021)
Abstract
One of the most important fields of logistic network is transportation network design that has an important effect on strategic decisions in supply chain management. It has recently attracted the attention of many researchers. In this paper, a multi-stage and multi-product logistic network design is considered.
This paper presents a hybrid approach based on simulation and optimization (Simulation based optimization), the model is formulated and presented in three stages. At first, the practical production capacity of each product is calculated using the Overall Equipment Effectiveness (OEE) index, in the second stage, the optimization of loading schedules is simulated. The layout of the loading equipment, the number of equipment per line, the time of each step of the loading process, the resources used by each equipment were simulated, and the output of the model determines the maximum number of loaded vehicles in each period. Finally, a multi-objective model is presented to optimize the transportation time and cost of products. A mixed integer nonlinear programming (MINLP) model is formulated in such a way as to minimize transportation costs and maximize the use of time on the planning horizon. We have used Arena simulation software to solve the second stage of the problem, the results of which will be explained. It is also used GAMS software to solve the final stage of the model and optimize the transporting cost and find the optimal solutions. Several test problems were generated and it showed that the proposed algorithm could find good solutions in reasonable time spans.
Gholamreza Moini, Ebrahim Teimoury, Seyed Mohammad Seyedhosseini, Reza Radfar, Mahmood Alborzi,
Volume 32, Issue 4 (12-2021)
Abstract
Productions of the industries around the world depend on using equipment and machines. Therefore, it is vital to support the supply of equipment and spare parts for maintenance operations, especially in strategic industries that separate optimization of inventory management, supplier selection, network design, and planning decisions may lead to sub-optimal solutions. The integration of forward and reverse spare part logistics network can help optimize total costs. In this paper, a mathematical model is presented for designing and planning an integrated forward-reverse repairable spare parts supply chain to make optimal decisions. The model considers the uncertainty in demand during the lead-time and the optimal assignment of repairable equipment to inspection, disassembly, and repair centers. A METRIC (Multi-Echelon Technique for recoverable Item Control) model is integrated into the forward-reverse supply chain to handle inventory management. A case study of National Iranian Oil Company (NIOC) is presented to validate the model. The non-linear constraints are linearized by using a linearization technique; then the model is solved by an iterative procedure in GAMS. A prominent outcome of the analyses shows that the same policies for repair and purchase of all the equipment and spare parts do not result in optimal solutions. Also, considering supply, repair, and inventory management decisions of spare parts simultaneously helps decision-makers enhance the supply chain's performance by applying a well-balanced repairing and purchasing policy.
Fatemeh Hajisoltani, Mehdi Seifbarghy, Davar Pishva,
Volume 34, Issue 1 (3-2023)
Abstract
The main objective of this research is effective planning as well as greener production and distribution of mineral products in supply chain network. Through a case study in cement industry, it considers the design of the mining supply chain network including several factories with a number of production lines and multiple distribution centers. It leaves part of the transportation operation to contractor companies so as to enable the core company to better focus on its products’ quality and also create job opportunities to local people. It employs a multi-period and multi-product mixed integer linear programming model to both maximize the profit of the factory as well as minimize its carbon dioxide gas emissions which are released during cement production and transportation process. Due to the uncertainty of its cost parameters, fuzzy logic has been used for the modeling and solved via a novel fuzzy multi-choice goal programming approach. Sensitivity analysis has also been done on some key parameters. Comparing results of the model with those from the single-objective models, shows that the model has good efficiency and can be used by managers of mining industries such as cement. Although leaving part of the transportation operations to contractor companies increases the number of vehicles used by the contractor companies, its associated decrease in the number of required factory vehicles, improves both objectives of the model. This should be considered by the managers since on top of profit maximization, it can help them build an eco-friendly image. Mining industries generally generate significant amount of pollutions and companies that pay attention to different dimensions of their social responsibilities can remain stable in the competitive market.
Mehdi Seifbarghy, Mehri Nasrabadi,
Volume 34, Issue 3 (9-2023)
Abstract
One of the most key parts of a health system is the blood supply chain whose design is challenging due to the perishability of blood. In this research, an optimization model for multi-product blood supply chain network design is presented by considering blood deterioration. We consider a four-echelon blood supply chain that consists of blood donation centers, blood processing centers, blood products storage centers and hospitals as the user of the blood products. The locations of blood processing centers and blood products storage centers should be determined. Furthermore, considering different levels of technologies for blood processing, the suitable level for each opened center should be determined. In addition, different types of vehicle are also considered for blood transfer between different levels of the network. The objective is minimizing the total logistical costs including the costs of opening and running the blood processing centers and blood product storage centers and blood products transfer costs between different levels of the supply chain. Finally, we apply the given model to a real case study in Iranian blood supply chain, and sensitivity analysis is performed on some parameters. In the end, some managerial insights are given
Welly Sugianto, Reazul Haq Abdul Haq, Mohd Nasrull Bin Abdol Rahman,
Volume 35, Issue 1 (3-2024)
Abstract
The automobile workshop queue system has been optimized using various approaches, such as queuing theory, simulation, and probability. The utilization of response surface methodology (RSM) for optimizing automobile workshop queue systems is not yet established. The utilization of RSM with direct observation enables the detection of patterns of correlations between variables and responses, which are then represented through mathematical equations. The optimization process involves numerous factors that impact queue performance, which can be categorized into two parts. The number of servers, number of phases, number of workers, worker experience, and layout are classified in inner design. This study examines the relationship between two components of the outer design, specifically the arrival rate and the interarrival time. The responses analyzed are queue cost, service time, average customer waiting time, and number of customers. The findings indicate that queue costs are not reliable for establishing the optimum value due to the significant impact of the cost structure on the structure of the optimal location. This study discovered that the number of leaving customers is related to queue costs and is relevant in selecting the optimal point. This study also formulates mathematical equations for predicting the optimal point. This study emphasizes the necessity for further investigation to uncover alternative mathematical equations that can precisely predict the optimal conditions for various types of services.
Renny Rochani, Wahyudi Sutopo, Satrio Fachri Chaniago,
Volume 35, Issue 1 (3-2024)
Abstract
Electric motorcycles (EM) are promising solutions for eco-friendly vehicles, but there are some dilemmas caused by the fossil-based energy used for charging and the limited charging infrastructure. This article proposes solving these dilemmas by designing a Solar-Powered Mobile Battery Swap Charging Station (MBSCS) for EM infrastructure. MBSCS will integrate solar power plants as a sustainable energy source and using battery swap system to accommodate EM. Design thinking methodology is used to develop the initial design of MBSCS and technical indicator assessment through focus group discussions with expert panelists. Simulations are conducted using PVSyst software to evaluate various system variants defined according to the selected components. The results of this study provide the MBSCS initial design, technical indicators to assess the MBSCS system, simulation results, and optimal system variant configuration. The findings of this study will mainly contribute to a solution for EM challenges and offer an environmentally friendly charging infrastructure. This study is expected to serve as an alternative solution for future mobile charging stations designed to answer the limited charging infrastructure as well as to demonstrate the potential use of portable solar power plant to overcome dependence on fossil-based energy.