Search published articles


Showing 29 results for Genetic Algorithm

Parham Azimi, Naeim Azouji,
Volume 28, Issue 4 (11-2017)
Abstract

In this paper a novel modelling and solving method has been developed to address the so-called resource constrained project scheduling problem (RCPSP) where project tasks have multiple modes and also the preemption of activities are allowed. To solve this NP-hard problem, a new general optimization via simulation (OvS) approach has been developed which is the main contribution of the current research. In this approach, the mathematical model of the main problem is relaxed and solved then the optimum solutions were used in the corresponding simulation model to produce several random feasible solutions for the main problem. Finally, the most promising solutions were selected as the initial population of a genetic Algorithm (GA). To test the efficiency of the problem, several test problems were solved by the proposed approach and according to the results, the proposed concept has a very good performance to solve such a complex combinatoral problem. Also, the concept could be easily applied for other similar combinatorics. 


Parviz Fattahi, Sanaz Keneshloo, Fatemeh Daneshamooz, Samad Ahmadi,
Volume 30, Issue 1 (3-2019)
Abstract

In this research a jobshop scheduling problem with an assembly stage is studied. The objective function is to find a schedule which minimizes completion time for all products. At first, a linear model is introduced to express the problem. Then, in order to confirm the accuracy of the model and to explore the efficiency of the algorithms, the model is solved by GAMS. Since the job shop scheduling problem with an assembly stage is considered as a NP-hard problem, a hybrid algorithm is used to solve the problem in medium to large sizes in reasonable amount of time. This algorithm is based on genetic algorithm and parallel variable neighborhood search. The results of the proposed algorithm are compared with the result of genetic algorithm. Computational results showed that for small problems, both HGAPVNS and GA have approximately the same performance. And in medium to large problems HGAPVNS outperforms GA.


Vahid Babaveisi, Farnaz Barzinpour, Ebrahim Teimoury,
Volume 31, Issue 1 (3-2020)
Abstract

In this paper, an inventory-routing problem for a network of appliance repair service is discussed including several repair depots and customers. The customer in this network makes a demand to have his/her faulty appliance repaired. Then, the repairman is assigned to the demand based on the skill needed for repairing of appliance differing for each one. The assigned repairman picks up the faulty appliance from the customer place using the vehicle for transferring faulty appliances to repair depot. The vehicle for picking up and delivering the appliances has a maximum capacity. Additionally, the repair depot needs spare parts to repair the faulty appliances that is supplied either by the supplier or lateral transshipment from the other depots. The capacitated vehicle inventory-routing problem with simultaneous pickup and delivery is NP-hard which needs special optimization procedure. Regarding the skill of repairman, it becomes more complex. Many solution approaches have been provided so far which have their pros and cons to deal with. In this study, an augmented angle-based sweep method is developed to cluster nodes for solving the problem. Finally, the heuristic is used in the main body of genetic algorithm with special representation.
Seyed Mohammad Ghadirpour, Donya Rahmani, Ghorbanali Moslemipour,
Volume 31, Issue 2 (6-2020)
Abstract

It is indispensable that any manufacturing system is consistent with potential changes such as fluctuations in demand. The uncertainty also makes it more essential. Routing Flexibility (RF) is one of the necessities to any modern manufacturing system such as Flexible Manufacturing System (FMS). This paper suggests three mixed integer nonlinear programming models for the Unequal–Area Stochastic Dynamic Facility Layout Problems (UA–SDFLPs) by considering the Routing Flexibility. The models are proposed when the independent demands follow the random variable with the Poisson, Exponential, and Normal distributions. To validation of the proposed models, many small-sized test problems has solved that derived from a real case in literature. The large-sized test problems are solved by the Genetic Algorithm (GA) at a reasonable computational time. The obtained results indicate that the discussed models for the UA–SDFLPs are valid and the managers can take these models to the manufacturing floor to adapt to the potential changes in today's competitive market.
 
Mojtaba Salehi, Efat Jabarpour,
Volume 32, Issue 3 (9-2021)
Abstract

Project scheduling is one of the most important and applicable concepts of project management. Many project-oriented companies and organizations apply variable cost reduction strategies in project implementation. Considering the current business environments, in addition to lowering their costs, many companies seek to prevent project delays. This paper presents a multi-objective fuzzy mathematical model for the problem of project scheduling with the limitation of multi-skilled resources able to change skills levels, optimizing project scheduling policy and skills recruitment. Given the multi objectivity of the model, the goal programming approach was used, and an equivalent single-objective model was obtained. Since the multi-skilled project scheduling is among the NP-Hard problems and the proposed problem is its extended state, so it is also an NP-Hard problem. Therefore, NSGA II and MOCS meta-heuristic algorithms were used to solve the large-sized model proposed using MATLAB software. The results show that the multi-objective genetic algorithm performs better than the multi-objective Cuckoo Search in the criteria of goal solution distance, spacing, and maximum performance enhancement.
Mohsen Khezeli, Esmaeil Najafi, Mohammad Haji Molana, Masoud Seidi,
Volume 33, Issue 2 (6-2022)
Abstract

Nowadays, supply chain management (SCM) is an interesting problem that has attracted the attention of many researchers. Transportation network design is one of the most important fields of SCM. In this paper, a logistics network design is considered to optimize the total cost and increase the network stability and resiliency. First, a mixed integer nonlinear programming model (MINLP) is formulated to minimize the transportation time and transportation cost of products. The proposed model consists of two main stages.
One is a normal stage that minimizes the transportation and holding costs, all manufacturers are also assumed to be healthy and in service. In this stage, the quantity of customer demand met by each manufacturer is eventually determined.
The second is the resilience stage. A method is presented by creating an information network in this supply chain for achieving the resilient and sustainable production and distribution chain that, if some manufacturers break down or stop production, Using the Restarting and load sharing scenarios in the reactive approach to increase resilience with accepting the costs associated with it in the supply network and return to the original state in the shortest possible time, the consequences of accidental failure and shutdown of production units are managed.
Two capacities are also provided for each manufacturer
  • Normal capacity to meet the producer's own demand
  • Load sharing capacity, Determine the empty capacity and increase the capacity of alternative units to meet the out-of-service units demand
In order to solve the model, we used GAMS & Matlab software to find the optimal solutions. A hybrid priority-based Non-dominated Sorting Genetic Algorithms (NSGA-II) and Sub-population Genetic Algorithm (SPGA- II) is provided in two phases to find the optimal solutions. The solutions are represented with a priority matrix and an Allocated vector. To compare the efficiency of two algorithms several criteria are used such as NPS, CS and HV. Several Sample problems are generated and solved that show the Sub-population Genetic Algorithm (SPGA- II) can find good solutions in a reasonable time limit.
Amir Nayeb, Esmaeil Mehdizadeh, Seyed Habib A. Rahmati,
Volume 34, Issue 2 (6-2023)
Abstract

In the field of scheduling and sequence of operations, one of the common assumptions is the availability of machines and workers on the planning horizon. In the real world, a machine may be temporarily unavailable for a variety of reasons, including maintenance activities, and the full capacity of human resources cannot be used due to their limited number and/or different skill levels. Therefore, this paper examines the Dual Resource Constrained Flexible Job Shop Scheduling Problem (DRCFJSP) considering the limit of preventive maintenance (PM). Due to various variables and constraints, the goal is to minimize the maximum completion time. In this regard, Mixed Integer Linear Programming (MILP) model is presented for the mentioned problem. To evaluate and validate the presented mathematical model, several small and medium-sized problems are randomly generated and solved using CPLEX solver in GAMS software. Because the solving of this problem on a large scale is complex and time-consuming, two metaheuristic algorithms called Genetic Algorithm (GA) and Vibration Damping Optimization Algorithm (VDO) are used. The computational results show that GAMS software can solve small problems in an acceptable time and achieve an accurate answer, and also meta-heuristic algorithms can reach appropriate answers. The efficiency of the two proposed algorithms is also compared in terms of computational time and the value obtained for the objective function.

Prasad Bari, Prasad Karande,
Volume 34, Issue 2 (6-2023)
Abstract

This paper presents a model for minimizing the makespan in the flow shop scheduling problem. Due to the impact of increased workloads, flow shops are becoming more popular and widely used in industries. To solve the challenge of minimizing makespan, a Hybrid-Heuristic-Metaheuristic-Genetic-Algorithm (HHMGA) is proposed. The proposed HHMGA algorithm is tested using the simulation software and demonstrated with steel industry data. The results are compared with those of the best available flow shop problem algorithms such as Palmer’s slope index, Campbell-Dudek-Smith (CDS), Nawaz-Enscore-Ham (NEH), genetic algorithm (GA) and particle swarm optimization (PSO). According to empirical results and relative differences from the lower bound, the proposed technique outperforms the three heuristics and two metaheuristics algorithms in three of six cases, while the remaining three produce the same results as the NEH heuristic. In comparison to the steel industry's regular job scheduling technique, the simulation model based on HHMGA can save 4642 hours. It was discovered that the suggested model enhanced the job sequence based on the makespan requirements.

Page 2 from 2