J. Fathikalajahi, M. Baniadam , R. Rahimpour ,
Volume 19, Issue 3 (7-2008)
Abstract
An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model.
H.r. Khakdaman, M. Abedinzadegan Abdi, H.a. Ghadirian, A.t. Zoghi,
Volume 19, Issue 3 (7-2008)
Abstract
Abstract: The use of mixed amine system in gas treating processes is increasing today. For natural gas sweetening purposes, mixed amines are typically mixtures of MDEA and DEA or MEA that enhance CO2 removal while retaining desirable characteristics of MDEA such as reduced corrosion problems and low heats of reaction. In this work, a process simulator was used to predict the performance of an Iranian gas sweetening plant with a sour gas feed containing 6.41% CO2 and 3.85% H2S on molar basis. Various mixtures of diethanolamine (DEA) and Methyl diethanolamine (MDEA) were used to investigate the potential for an increase in plant capacity. It was noticed that the process simulator is quite capable in predicting the existing plant performance and can potentially guide in selecting the optimum blend composition. It was also noticed that a substantial increase in plant capacity is quite possible by just adding MDEA to the existing solvent and keeping the solvent flow rate and stripper reboiler heat duty. In another word, it is possible to increase the plant capacity from 293 to 357 MMSCFD using a mixed amine system.
M. Jahir Bin Alam, M.a. Ansery, R.k Chowdhuary, J. Uddin Ahmed, S. Islam , S. Rahman ,
Volume 19, Issue 3 (7-2008)
Abstract
Abstract: Sylhet is the northeastern region of Bangladesh and probability of earthquake in Sylhet is higher than other areas of this zone. Among 27 wards, Ward no. 14 is one of the important largest Wards in Sylhet city and a densely populated one. It was clear from the survey works, 42.8% buildings are belongs to Building with RCC frame 54.03% buildings are Masonry buildings. Another interesting finding is 325 houses fall in the category of Houses with resident 1-10. The occurrence of an earthquake of PGA value 0.9g on ward no. 14 causes massive loss of lives and damage to buildings. Depending on the time of the day 147 to 603 people may be killed due to structural collapse and the buildings of worth approximately TK.32.00 core may be damaged.
A. Nicknam, S. Yaghmaei Sabegh, A. Yazdani,
Volume 19, Issue 3 (7-2008)
Abstract
Abstract : The main objective of this study is estimating the strong motion for the Bam region using the stochastically based seismological models. The two widely used synthetic techniques namely point-source and finite-fault were utilized incorporating the source-path and site parameters into simple function. The decay factor kappa was estimated based on the data obtained from recorded strong motions to be used as an appropriate factor for the region. The results were validated against those of the recorded data during the destructive 26 December 2003 Bam earthquake in south east of Iran. The efficiency of these methods and estimating the appropriate regional model parameters are the main objectives of this study. The results of the synthesized ground motion, such as acceleration time history, PGA and elastic response spectra were compared /assessed with those of observed data. The Bias model (MB) is used to assess the validation of the simulated earthquakes against recorded horizontal acceleration time histories. The %90 confidence interval of the means averaged over the whole stations using t-student distribution was evaluated and it was shown to be in an acceptable range. The elastic response spectra of the simulated strong motion are showed to be in a good agreement between the recorded waveforms confirming the acceptability of the selected/evaluated source-path-site model parameters. The sensitivity of the simulated PGA and response spectra against kappa factor as well as the path-averaged frequency-dependent quality factor Q, is studied and discussed.
A. Shariat Mohaymany, M. Khodadadiyan,
Volume 19, Issue 3 (7-2008)
Abstract
Abstract: The shipments of hazardous materials (HAZMATs) induce various risks to the road network. Today, one of the major considerations of transportation system managers is HAZMATs shipments, due to the increasing demand of these goods (because it is more used in industry, agriculture, medicine, etc.), and the rising number of incidents that are associated to hazardous materials. This paper presents a tool for HAZMATs transportation authorities and planners that would reduce the risk of the road network by identifying safe and economic routes for HM transshipment. Using the proposed linear integer programming model, the HM management system could determine an optimal assignment for all origin–destination pairs for various hazardous materials in a transportation network and so reduce the vulnerability due to HAZMATs releases such as population and environmental vulnerability. The model is implemented and evaluated for the hazardous materials routing within Fars, Yazd, Isfahan, and Chaharmaha-o-Bakhtiyari provinces of Iran. The branch-and-bound algorithm is applied to solve the model using the Lingo software package.
A. Amid, S.h. Ghodsypour,
Volume 19, Issue 4 (12-2008)
Abstract
Supplier selection is one of the most important activities of purchasing departments. This importance is increased even more by new strategies in a supply chain, because of the key role suppliers perform in terms of quality, costs and services which affect the outcome in the buyer’s company. Supplier selection is a multiple criteria decision making problem in which the objectives are not equally important. In practice, vagueness and imprecision of the goals, constraints and parameters in this problem make the decision making complicated. Simultaneously, in this model, vagueness of input data and varying importance of criteria are considered. In real cases, where Decision- Makers (DMs) face up to uncertain data and situations, the proposed model can help DMs to find out the appropriate ordering from each supplier, and allows purchasing manager(s) to manage supply chain performance on cost, quality, on time delivery, etc. An additive weighted model is presented for fuzzy multi objective supplier selection problem with fuzzy weights. The model is explained by an illustrative example.
S.k. Charsoghi, A. Sadeghi,
Volume 19, Issue 4 (12-2008)
Abstract
In this paper, a two-echelon supply chain, which includes two products based on the following considerations, has been studied and the bullwhip effect is quantified. Providing a measure for bullwhip effect that enables us to analyze and reduce this phenomenon in supply chains with two products is the basic purpose of this paper. Demand of products is presented by the first order vector autoregressive time series and ordering system is established according to order up to policy. Moreover, lead-time demand forecasting is based on moving average method because this forecasting method is used widely in real world. Based on these assumptions, a general equation for bullwhip effect measure is derived and there is a discussion about non-existence of an explicit expression for bullwhip effect measure according to the present approach on the bullwhip effect measure. However, bullwhip effect equation is presented for some limited cases. Finally, bullwhip effect in a two-product supply chain is analyzed by a numerical example.
K. Shahanaghi, V.r. Ghezavati,
Volume 19, Issue 4 (12-2008)
Abstract
In this paper, we present the stochastic version of Maximal Covering Location Problem which optimizes both location and allocation decisions, concurrently. It’s assumed that traveling time between customers and distribution centers (DCs) is uncertain and described by normal distribution function and if this time is less than coverage time, the customer can be allocated to DC. In classical models, traveling time between customers and facilities is assumed to be in a deterministic way and a customer is assumed to be covered completely if located within the critical coverage of the facility and not covered at all outside of the critical coverage. Indeed, solutions obtained are so sensitive to the determined traveling time. Therefore, we consider covering or not covering for customers in a probabilistic way and not certain which yields more flexibility and practicability for results and model. Considering this assumption, we maximize the total expected demand which is covered. To solve such a stochastic nonlinear model efficiently, simulation and genetic algorithm are integrated to produce a hybrid intelligent algorithm. Finally, some numerical examples are presented to illustrate the effectiveness of the proposed algorithm.
H. Teimory, H. Mirzahosseinian, A. Kaboli,
Volume 19, Issue 4 (12-2008)
Abstract
The advent of e-commerce has prompted many manufacturers to redesign their traditional channel structure by engaging in direct sales. In this paper, we present a dual channel inventory model based on queuing theory in a manufacturer-retailer supply chain, consisting of a traditional retail channel and a direct channel which stocks are kept in both upper and lower echelon. The system receives stochastic demand from the both channel which each channel has an independent demand arrival rate. A lost-sales model which no backorder is allowed is supposed. The replenishment lead times are assumed independent exponential random variables for both warehouse and the retail store. Under the replenishment inventory policy, the inventory position is kept constant at a base-stock level. To analyze the chain performance, an objective function included holding and lost sales costs is defined. At the end, a proposed algorithm named, Best Neighborhood (BN) is used to find a good solution for inventory and the results are compared with Simulated Annealing (SA) solutions.
M. Ghazanfari, K. Noghondarian, A. Alaedini,
Volume 19, Issue 4 (12-2008)
Abstract
Although control charts are very common to monitoring process changes, they usually do not indicate the real time of the changes. Identifying the real time of the process changes is known as change-point estimation problem. There are a number of change point models in the literature however most of the existing approaches are dedicated to normal processes. In this paper we propose a novel approach based on clustering techniques to estimate Shewhart control chart change-point when a sustained shift is occurrs in the process mean. For this purpose we devise a new clustering mechanism, a new similarity measure and a new objective function. The proposed approach is not only capable of detecting process change-points, but also automatically estimates the true values of the out-of-control parameters of the process. We also compare the performance of the proposed approach with existing methods.
R. Tavakolimoghadam, M. Vasei,
Volume 19, Issue 4 (12-2008)
Abstract
In this paper, a single machine sequencing problem is considered in order to find the sequence of jobs minimizing the sum of the maximum earliness and tardiness with idle times (n/1/I/ETmax). Due to the time complexity function, this sequencing problem belongs to a class of NP-hard ones. Thus, a special design of a simulated annealing (SA) method is applied to solve such a hard problem. To compare the associated results, a branch-and-bound (B&B) method is designed and the upper/lower limits are also introduced in this method. To show the effectiveness of these methods, a number of different types of problems are generated and then solved. Based on the results of the test problems, the proposed SA has a small error, and computational time for achieving the best result is very small.
R. Sadeghian, G.r. Jalali-Naini, J. Sadjadi, N. Hamidi Fard ,
Volume 19, Issue 4 (12-2008)
Abstract
In this paper Semi-Markov models are used to forecast the triple dimensions of next earthquake occurrences. Each earthquake can be investigated in three dimensions including temporal, spatial and magnitude. Semi-Markov models can be used for earthquake forecasting in each arbitrary area and each area can be divided into several zones. In Semi-Markov models each zone can be considered as a state of proposed Semi-Markov model. At first proposed Semi-Markov model is explained to forecast the three mentioned dimensions of next earthquake occurrences. Next, a zoning method is introduced and several algorithms for the validation of the proposed method are also described to obtain the errors of this method.
F. Rashidinejad, M. Osanloo , B. Rezai ,
Volume 19, Issue 5 (7-2008)
Abstract
Cutoff grade is a grade used to assign a destination label to a parcel of material. The optimal cutoff grades depend on all the salient technological features of mining, such as the capacity of extraction and of milling, the geometry and geology of the orebody, and the optimal grade of concentrate to send to the smelter. The main objective of each optimization of mining operation is to maximize the net present value of the whole mining project, but this approach without consideration of environmental issues during planning is not really an optimum design. Lane formulation among the all presented algorithms is the most commonly used method for optimization of cutoff grades. All presented models for optimum cutoff grades are ore-oriented and in none of them the costs related to waste materials which must to be minimized during the mine life are considered. In this paper, after comparison of traditional and modern approaches for cutoff grade optimization in open pit mines, a real case study is presented and discussed to ensure optimality of the cutoff grades optimization process.
F. Sereshki, S.a. Hosseini, N. Aziz , I. Porter ,
Volume 19, Issue 5 (7-2008)
Abstract
The Outburst can be defined as a sudden release of coal and rock accompanied by large quantities of gas into the underground coal mine workings which represents a major hazard in underground coal mines. Gas drainage has been proven to be successful in reducing outburst hazards by decreasing the in-situ gas pressure. One of aspect of gas drainage from coal seams is coal matrix volume changes. Current study is primarily concerned with experimental studies related to coal volume change (coal shrinkage) under various gas types and pressures. Two types of tests were conducted on each sample, the adsorption test for coal swelling and the desorption test for coal shrinkage. The gases used in the study were CH4, CO2, CH4/CO2 (50-50% volume), and N2. In this research, tests were conducted with respect to volumetric change behavior in different gases and their corresponding comparative results were presented.
A.d. Akbari, M. Osanloo , M.a. Shirazi ,
Volume 19, Issue 5 (7-2008)
Abstract
Planning and design procedure of an open pit mining project just can be started after ultimate pit determination. In the carried out study in this paper it was shown that the most important factor in ultimate pit determination and in consequence in the whole planning and design procedure of an open pit mine is the metal price. Metal price fluctuations in recent years were exaggerated and imposed a high degree of uncertainty to the mine planning procedure while none of the existent algorithms of the pit limit determination consider the metal price uncertainty. Real Option Approach (ROA) is an efficient method of decision making in the condition of uncertainty. This approach usually used for evaluation of defined natural resources projects up to now. This study considering the metal price uncertainty used real option approach to prepare a methodology for determining the Ultimate Pit Limits (UPL). The study was carried out on a non-ferrous metallic cylindrical ore deposit but the achieved methodology can be adjusted for all kinds of the deposits. The achieved methodology was comprehensively described through the examples in a way that can be used by the mine planners.
M. Ameli, A. Mirzazadeh, M. Shirazi,
Volume 24, Issue 1 (2-2013)
Abstract
It was suggested in 2004 by some researchers that it might be possible to improve production systems performance by applying the first and second laws of thermodynamics to reduce system entropy. Then these laws were used to modify the economic order quantity (EOQ) model to derive an equivalent entropic order quantity (EnOQ). Moreover the political instability or uncertainty of a country (as well as the whole world) leads to a much more unstable situation in the present world economy. Thus, changes in inflation take place, and it is needed to consider uncertain inflation rate. In this paper we extend the EnoQ model by considering deteriorating items with imperfect quality and price dependent demand. We also assume fuzzy inflation and discount rates. A mathematical model is developed to determine the number of cycles that maximizes the present value of total revenue in a finite planning horizon. The fuzzified model for inflation and discount rate is formulated and solved by two methods: signed distance and fuzzy numbers ranking. Numerical examples are presented and results are discussed. Results show that the number of cycles decreases in fuzzy inflationary conditions. They also illustrate that defuzzification method results in more cycles than fuzzy method.
Ramin Sadeghian,
Volume 27, Issue 2 (6-2016)
Abstract
Generally ordering policies are done by two methods, including fix order quantity (FOQ) and fix order period (FOP). These methods are static and either the quantity of ordering or the procedure of ordering is fixing in throughout time horizon. In real environments, demand is varying in any period and may be considered as uncertainty. When demand is variable in any period, the traditional and static ordering policies with fix re-order points cannot be efficient. On the other hand, sometimes in real environments some costs may not be well-known or precise. Some costs such as holding cost, ordering cost and so on. Therefore, using the cost based inventory models may not be helpful. In this paper, a model is developed which can be used in the cases of stochastic and irregular demand, and also unknown costs. Also some attributes consisting of expected positive inventory level, expected negative inventory level and inventory confidence level are considered as objective functions instead the objective function of total inventory cost. A numerical example is also presented for more explanation.
Zahra Karimi Ezmareh, Gholam Hossein Yari,
Volume 30, Issue 2 (6-2019)
Abstract
In this paper, a new distribution that is highly applicable in the fields of reliability and economics is introduced. Also the parameters of this distribution is estimated using two methods of Maximum Likelihood and Bayes with two prior distributions Weibull and Uniform, and these two methods are compared using Monte-Carlo simulation. Finally, this new model is fit on the real data(with the failure time of 84 aircraft) and some of comparative criteria are calculated to confirm superiority of the proposed model compared to other models.
Mojtaba Salehi, Haniyeh Rezaei,
Volume 30, Issue 2 (6-2019)
Abstract
Sahebe Esfandiari, Hamid Mashreghi, Saeed Emami,
Volume 30, Issue 2 (6-2019)
Abstract
We study the problem of order acceptance, scheduling and pricing (OASP) in parallel machine environment. Each order is characterized by due date, release date, deadline, controllable processing time, sequence dependent set up time and price in MTO system. We present a MILP formulation to maximize the net profit. Then under joint optimization approach, the pricing decisions set for unrelated parallel machine environment. The results show that the basic developed problem can solve the scheduling decisions based on different levels of products’ priced. Thus the problem solves these two categories of decisions simultaneously. Moreover, the changes of accepted orders in pricing levels can be analyzed regarding its dependency to price elasticity of items for future research.