Search published articles


Showing 23 results for Shah

Shahla Zandi, Reza Samizadeh, Maryam Esmaeili,
Volume 34, Issue 3 (IJIEPR 2023)
Abstract

A coalition loyalty program (CLP) is a business strategy adopted by companies to increase and retain their customers. An operational challenge in this regard is to determine the coordination mechanism with business partners. This study investigated the role of revenue-sharing contracts (RSCs) considering customer satisfaction in coalition loyalty reward supply chain planning. A two-stage stochastic programming approach was considered for the solution considering the demand uncertainty. We aimed to investigate the impact of RSCs on the decision-making and profitability of the host firm of this supply chain taking into account the maximization of the profit coming from the CLP compared to the more common wholesale price contract (WPC). After the model was solved, computational experiments were performed to evaluate and compare the effects of RSCs and WPCs on the performance of the loyalty program (LP). The results revealed that RSC is an effective incentive to increase the host’s profit and reduce its cost. These findings add new insights to the management literature, which can be used by business decision makers.
 
Seyed Erfan Mohammadi, Emran Mohammadi, Ahmad Makui, Kamran Shahanaghi,
Volume 34, Issue 4 (IJIEPR 2023)
Abstract

Since 1952, when the mean-variance model of Markowitz introduced as a basic framework for modern portfolio theory, some researchers have been trying to add new dimensions to this model. However, most of them have neglected the nature of decision making in such situations and have focused only on adding non-fundamental and thematic dimensions such as considering social responsibilities and green industries. Due to the nature of stock market, the decisions made in this sector are influenced by two different parameters: (1) analyzing past trends and (2) predicting future developments. The former is derived objectively based on historical data that is available to everyone while the latter is achieved subjectively based on inside-information that is only available to the investor. Naturally, due to differences in the origin of their creation the bridge between these two types of analysis in order to optimize the portfolio will be a phenomenon called "ambiguity". Hence, in this paper, we revisited Markowitz's model and proposed a modification that allow incorporating not only return and risk but also incorporate ambiguity into the investment decision making process. Finally, in order to demonstrate how the proposed model can be applied in practice, it is implemented in Tehran Stock Exchange (TSE) and the experimental results are examined. From the experimental results, we can extract that the proposed model is more comprehensive than Markowitz's model and has greater ability to cover the conditions of the stock market.

Mansour Abedian, Amirhossein Karimpour, Morteza Pourgharibshahi, Atefeh Amindoust,
Volume 35, Issue 2 (IJIEPR 2024)
Abstract

The area coverage of machines on the production line to address the scheduling and routing problem of autonomous guided vehicles (AGV) is an innovative way to improve productivity in manufacturing enterprises. This paper proposed a new model for the optimal area coverage of machines in the production line by applying a single AGV to minimize both the transfer costs and the number of breakpoints of AGV. One of the unique advantages of the area coverage employed in the present study is that it minimizes transfer costs and breakpoints, and makes it possible to provide service for several machines simultaneously since the underlying assumption was finding a path to ensure that every point in a given workspace is covered at least once. Since rail AGV is used in this study, AGV can only pass horizontal and vertical distances in the production line. The reversal of the AGV path in vertical and horizontal distances implies failure and breakpoint in the present paper. The simulation results confirm the feasibility of the proposed method.


Page 2 from 2