Showing 113 results for Mohammad
Vahid Razmjoei, Iraj Mahdavi, Nezam Mahdavi-Amiri, Mohammad Mahdi Paydar,
Volume 33, Issue 2 (IJIEPR 2022)
Abstract
Companies and firms, nowadays, due to mounting competition and product diversity, seek to apply virtual cellular manufacturing systems to reduce production costs and improve quality of the products. In addition, as a result of rapid advancement of technology and the reduction of product life cycle, production systems have turned towards dynamic production environments. Dynamic cellular manufacturing environments examine multi-period planning horizon, with changing demands for the periods. A dynamic virtual cellular manufacturing system is a new production approach to help manufacturers for decision making. Here, due to variability of demand rates in different periods, which turns to flow variability, a mathematical model is presented for dynamic production planning. In this model, we consider virtual cell production conditions and worker flexibility, so that a proper relationship between capital and production parameters (part-machine-worker) is determined by the minimum lost sales of products to customers, a minimal inventory cost, along with a minimal material handling cost. The problems based on the proposed model are solved using LINGO, as well as an epsilon constraint algorithm.
Sima Boosaiedi, Mohammad Reisi-Nafchi, Ghasem Moslehi,
Volume 33, Issue 2 (IJIEPR 2022)
Abstract
Operating rooms have become the most important areas in hospitals because of the scarcity and cost of resources. The present study investigates operating room scheduling and rescheduling considering the priority of surgical patients in a specialized hospital. The ultimate purpose of scheduling is to minimize patient waiting time, surgeon idle time between surgeries, and penalties for deviations from operating room preferences. A mathematical programming model is presented to solve the problem. Because the problem is strongly NP-hard, two heuristic algorithms are presented. A heuristic algorithm based on a mathematical programming model with local search obtains near-optimal solutions for all the samples. The average relative deviation of this algorithm is 0.02%. In continuous, heuristic algorithms performance have been investigated by increasing the number of patients and reduce the number of recovery beds. Next, a rescheduling heuristic algorithm is presented to deal with real-time situations. This algorithm presents fewer changes resulting from rescheduling in comparison with the scheduling problem.
Abolfazl Khatti Dizabadi, Abdollah Arasteh, Mohammad Mahdi Paydar,
Volume 33, Issue 4 (IJIEPR 2022)
Abstract
Supply chain management is one of the requirements for achieving economic growth in any supply chain. If managers' decisions are optimally allocated, it will be possible for companies and industries with a competitive and profitable advantage to grow and develop. The main desire of any company for survival is to minimize costs and maximize profitability. Due to the increasing complexity and dynamics of the situation, decision-making in this area requires more advanced analytical methods. Accordingly, the Real options theory has emerged, which introduces a new way of thinking about investing, especially in conditions of uncertainty. In this paper, a multi-period model is considered that examines the demand uncertainty in each period and also uses the Real options theory to seek the optimal strategy for investors in conditions of uncertainty and the effect of investors’ discretion on it. Using a decision tree to estimate the probable demand in each period and using Monte Carlo simulations to identify the lowest cost scenario in each period, the model has been solved in this research. In the case of the uncertainty parameter, sensitivity analysis is performed, and under different values of this parameter, the obtained result is evaluated and validated. And the extension of outsourcing will increase the company’s profitability and meet higher demand and lower costs.
Hasan Rasay, Mohammad Saber Fallahnezahd, Shakiba Bazeli,
Volume 33, Issue 4 (IJIEPR 2022)
Abstract
Condition-based maintenance (CBM) is a well-known maintenance cost minimization strategy in which maintenance activities are performed based on the actual state of the system being maintained. The act of combining maintenance activities for different components is called opportunistic maintenance or maintenance clustering, which is known to be cost-effective, especially for multi-component systems with economic dependency. Every operating system is subject to gradual degradation which ultimately leads to system failure. Since each level of degradation can be represented by a state, every system can be modeled as a multi-state structure. The state of a system can be estimated through condition monitoring, albeit with uncertainty. The majority of studies in the field of maintenance planning are focused on preventive perfect maintenance operations such as replacement. But in practice, most of the maintenance operations are imperfect because of time, technology, and resource limitations. In this paper, we present a CBM clustering model that factors in uncertainty in alerting and lifetime distribution and considers the possibility of using the imperfect maintenance approach. This model is developed for a system with three levels of warning (Signal, Alert, Alarm), which combines inspections and condition monitoring to avoid unnecessary inspections and thereby achieve better cost-efficiency. Our analysis and results provide a general view of when and how to cluster maintenance activities to minimize maintenance costs and maximize system availability. Numerical investigations performed with MATLAB show that clustering CBM activities can result in as much as 80% cost saving compared to No clustering.
Motahare Gitinavard, Parviz Fattahi, Seyed Mohammad Hassan Hosseini, Mahsa Babaei,
Volume 33, Issue 4 (IJIEPR 2022)
Abstract
This paper aims to introduce a joint optimization approach for maintenance, quality, and buffer stock policies in single machine production systems based on a P control chart. The main idea is to find the optimal values of the preventive maintenance period, the buffer stock size, the sample size, the sampling interval, and the control limits simultaneously, such that the expected total cost per time unit is minimized. In the considered system, we have a fixed rate of production and stochastic machine breakdowns which directly affect the quality of the product. Periodic preventive maintenance (PM) is performed to reduce out-of-control states. In addition, corrective maintenance is required after finding each out-of-control state. A buffer is used to reduce production disturbances caused by machine stops. To ensure that demand is met during a preventive and corrective maintenance operation. All features of three sub-optimization problems including maintenance, quality control, and buffer stock policies are formulated and the proposed integrated approach is defined and modeled mathematically. In addition, an iterative numerical optimization procedure is developed to provide the optimal values for the decision variables. The proposed procedure provides the optimal values of the preventive maintenance period, the buffer stock size, the sample size, the sampling interval, and the control chart limits simultaneously, in a way that the total cost per time unit is minimized. Moreover, some sensitivity analyses are carried out to identify the key effective parameters.
Mohammad Yaseliani, Majid Khedmati,
Volume 34, Issue 1 (IJIEPR 2023)
Abstract
Diagnosis of diseases is a critical problem that can help for more accurate decision-making regarding the patients’ health and required treatments. Machine learning is a solution to detect and understand the symptoms related to heart disease. In this paper, a logistic regression model is proposed to predict heart disease based on a dataset with 299 people and 13 variables and to evaluate the impact of different predictors on the outcome. In this regard, at first, the effect of each predictor on the precise prediction of the outcome has been evaluated and analyzed by statistical measurements such as AIC scores and p-values. The logit models of different predictors have also been analyzed and compared to select the predictors with the highest impact on heart disease. Then, the combined model that best fits the dataset has been determined using two statistical approaches. Based on the results, the proposed model predicts heart disease with a sensitivity and specificity of 84.21% and 90.38%, respectively. Finally, using normal probability density curves, the likelihood ratios have been established based on classes 1 and 0. The results show that the likelihood ratio classifier performs as satisfactorily as the logistic regression model.
Ali Salmasnia, Mohammad Reza Maleki, Esmaeil Safikhani,
Volume 34, Issue 2 (IJIEPR 2023)
Abstract
In some applications, the number of quality characteristics is larger than the number of observations within subgroups. Common multivariate control charts to monitor the variability of such high-dimensional processes are unsuitable because the sample covariance matrix is not positive semi-definite and invertible. Moreover, the impact of gauge imprecision on detection capability of multivariate control charts under high-dimensional setting has been clearly neglected in the literature. To overcome these shortcomings, this paper develops a ridge penalized likelihood ratio chart for Phase II monitoring of high-dimensional process in the presence of measurement system errors. The developed control chart departures from the assumption of sparse variability shifts in which the assignable cause can only affects a few elements of the covariance matrix. Then, to compensate for the adverse impact of gauge impression, the developed chart is extended by employing multiple measurements on each sampled item. Simulation studies are carried out to study the impact of imprecise measurements on detectability of the developed monitoring scheme under different shift patterns. The results show that the gauge inability negatively affects the run-length distribution of the developed control chart. It is also found that the extended chart under multiple measurements strategy can effectively reduce the error impact.
Mohammad Reza Ghatreh Samani, Jafar Gheidar-Kheljani,
Volume 34, Issue 3 (IJIEPR 2023)
Abstract
In this paper, a brief review of the recently developed blood supply chain (BSC) management studies is firstly presented. Then, a first-ever multi-objective robust BSC model is proposed, which is inspired by the need for an integrated approach towards improving the performance of BSC networks under uncertain conditions. The network efficiency by minimizing cost, adequacy by providing reliable and sufficient blood supply, and effectiveness by controlling blood freshness are aimed at the proposed model. A two-phase approach based on robust programming and an augmented epsilon-constraint method is devised to model the uncertainty in parameters and provides a single-objective counterpart of the original multi-objective robust model. We investigate a case to illustrate the real-world applicability of the problem. The research comes to an end by performing some sensitivity analyses on critical parameters, and the results imply the capability of the model and its solution technique.
Mahdi Rezaei, Ali Salmasnia, Mohammad Reza Maleki,
Volume 34, Issue 3 (IJIEPR 2023)
Abstract
This article develops an integrated model of transmitting strategies and operational activities to enhance the efficiency of supply chain management. As the second objective, this paper aims to improve supply chain performance management (SCPM) by employing proper decision-making approaches. The proposed model optimizes the performance indicator based on SCOR metrics. A process-based method is utilized for high-level decisions, while a mathematical programming method is proposed for low-level decisions. The suggested operational model takes some major supply chain properties such as multiple suppliers, multiple plants, multiple materials, and multiple produced items over several time periods into account. To solve the operational multi-objective optimization model, a goal programming approach is applied. The computational results are explained in terms of a numerical example, and a sensitivity analysis is performed to investigate how the performance of the supply chain is influenced by strategic scenario planning.
Seyed Erfan Mohammadi, Emran Mohammadi, Ahmad Makui, Kamran Shahanaghi,
Volume 34, Issue 4 (IJIEPR 2023)
Abstract
Since 1952, when the mean-variance model of Markowitz introduced as a basic framework for modern portfolio theory, some researchers have been trying to add new dimensions to this model. However, most of them have neglected the nature of decision making in such situations and have focused only on adding non-fundamental and thematic dimensions such as considering social responsibilities and green industries. Due to the nature of stock market, the decisions made in this sector are influenced by two different parameters: (1) analyzing past trends and (2) predicting future developments. The former is derived objectively based on historical data that is available to everyone while the latter is achieved subjectively based on inside-information that is only available to the investor. Naturally, due to differences in the origin of their creation the bridge between these two types of analysis in order to optimize the portfolio will be a phenomenon called "ambiguity". Hence, in this paper, we revisited Markowitz's model and proposed a modification that allow incorporating not only return and risk but also incorporate ambiguity into the investment decision making process. Finally, in order to demonstrate how the proposed model can be applied in practice, it is implemented in Tehran Stock Exchange (TSE) and the experimental results are examined. From the experimental results, we can extract that the proposed model is more comprehensive than Markowitz's model and has greater ability to cover the conditions of the stock market.
Simin Dargahi Darabad, Maryam Izadbakhsh, Seyed Farid Ghannadpour, Siamak Noori, Mohammad Mahdavi Mazdeh,
Volume 35, Issue 1 (IJIEPR 2024)
Abstract
The construction supply chain is presently the focus of considerable interest among numerous project-related businesses. Strong project management is essential for the effective completion of a project, since restricted budgets and time constraints are considered for each project. The research uses multi-objective linear programming to create a mathematical model of the building supply chain. The primary aims of the present investigation are to limit the expenses associated with logistics and to diminish the release of greenhouse gases caused by transportation. Given the reality of managing several projects concurrently, the model provided comprises a network of projects. Following the completion of each project, an inspection is arranged to assess its level of success. Estimating the costs of a project relies on several variables. In reality, there are always uncertainties highlighted in several studies about the uncertainty of cost and time parameters. This research incorporates many characteristics concurrently to simulate real-world settings and address the issue of uncertainty. The expression of uncertainty for all costs, activity length, inspection, supplier capacity, and resource demand are represented by triangular fuzzy numbers. Ultimately, the precision of the model's performance has been verified using a numerical illustration.
Amirmohammad Larni-Fooeik, Hossein Ghanbari, Seyed Jafar Sadjadi, Emran Mohammadi,
Volume 35, Issue 1 (IJIEPR 2024)
Abstract
In the ever-evolving realm of finance, investors have a myriad of strategies at their disposal to effectively and cleverly allocate their wealth in the expansive financial market. Among these strategies, portfolio optimization emerges as a prominent approach used by individuals seeking to mitigate the inherent risks that accompany investments. Portfolio optimization entails the selection of the optimal combination of securities and their proportions to achieve lower risk and higher return. To delve deeper into the decision-making process of investors and assess the impact of psychology on their choices, behavioral finance biases can be introduced into the portfolio optimization model. One such bias is regret, which refers to the feeling of remorse that can induce hesitation in making significant decisions and avoiding actions that may lead to unfavorable investment outcomes. It is not uncommon for investors to hold onto losing investments for extended periods, reluctant to acknowledge mistakes and accept losses due to this behavioral tendency. Interestingly, in their quest to sidestep regret, investors may inadvertently overlook potential opportunities. This research article aims to undertake an in-depth examination of 41 publications from the past two decades, providing a comprehensive review of the models and applications proposed for the regret approach in portfolio optimization. The study categorizes these methods into accurate and approximate models, scrutinizing their respective timeframes and exploring additional constraints that are considered. Utilizing this article will provide investors with insights into the latest research advancements in the realm of regret, familiarize them with influential authors in the field, and offer a glimpse into the future direction of this area of study. The extensive review findings indicate a growth in the adoption of the regret approach in the past few years and its advancements in portfolio optimization.
Pardis Roozkhosh, Amir Mohammad Fakoor Saghih,
Volume 35, Issue 3 (IJIEPR 2024)
Abstract
The reliability of each component in a system plays a crucial role, as any malfunction can significantly reduce the system's overall lifespan. Optimizing the arrangement and sequence of heterogeneous components with varying lifespans is essential for enhancing system stability. This paper addresses the redundancy allocation problem (RAP) by determining the optimal number of components in each subsystem, considering their sequence, and optimizing multiple criteria such as reliability, cost uncertainty, and weight. A novel approach is introduced, incorporating a switching mechanism that accommodates both correct and defective switches. To assess reliability benefits, Markov chains are employed, while cost uncertainty is evaluated using the Monte-Carlo method with risk criteria such as percentile and mean-variance. The problem is solved using a modified genetic algorithm, and the proposed method is benchmarked against alternative approaches in similar scenarios. The results demonstrate a significant improvement in the Model Performance Index (MPI), with the best RAPMC solution under a mixed strategy achieving an MPI of 0.98625, indicating superior model efficiency compared to previous studies. Sensitivity analysis reveals that lower percentiles in the cost evaluations correlate with reduced objective function values and mean-variance, confirming the model's robustness in managing redundancy allocation to optimize reliability and control cost uncertainties effectively.