Showing 113 results for Mohammad
Bardia Behnia, Iraj Mahdavi, Babak Shirazi, Mohammad Mahdi Paydar,
Volume 28, Issue 3 (IJIEPR 2017)
Abstract
Nowadays, the necessity of manufacturers’ response to their customers’ needs and their fields of activities have extended widely. The cellular manufacturing systems have adopted reduced costs from mass-production systems and high flexibility from job-shop manufacturing systems, and therefore, they are very popular in modern manufacturing environments. Manufacturing systems, in addition to proper machinery and equipment, workforces and their performance play a critical role.
Staff creativity is an important factor in product development, and their interest in cooperating with each other in the work environment can help the growth and maturity of this factor. In this research, two important aspects of cellular manufacturing take into consideration: Cell formation and workforce planning. Cell formation is a strategic decision, and workforce planning is a tactical decision. Practically, these two sectors cannot be planned simultaneously, and decision making in this regard is decentralized. For this reason, a bi-level mathematical model is proposed. The first level aims to reduce the number of voids and exceptional elements, and the second level tends to promote the sense of interest between the workforces for working together, which will result in synergy and growth of the organization.
Bahman Esmailnezhad, Mohammad Saidi-Mehrabad,
Volume 29, Issue 1 (IJIEPR 2018)
Abstract
This paper deals the stochastic cell formation problem (SCFP). The paper presents a new nonlinear integer programming model for the SCFP in which the effect of buffer size on the grouping efficacy of cells has been investigated. The objective function is the maximization of the grouping efficacy of cells. A chance constraint is applied to explore the effect of buffer on the SCFP. Processing time and arrival time of the part for each cell are considered stochastic and are following exponential probability distribution. To find out the optimal solution in a reasonable time, a heuristic approach is used to linearize the proposed nonlinear model. This problem has been known as an NP-hard problem. Therefore, two metaheuristic methods, namely; genetic algorithm and particle swarm optimization are employed to solve examples. The parameters of the algorithms are calibrated using Taguchi and full factorial methods, and the performances of the algorithms on the examples of various sizes are analyzed against global solutions obtained from Lingo software’s branch and bound (B&B) in terms of quality of solutions and computational time.
Amir Mohammad Fathollahi Fard, Mostafa Hajiaghaei-Keshteli,
Volume 29, Issue 2 (IJIEPR 2018)
Abstract
Nowadays, several methods in production management mainly focus on the different partners of supply chain management. In real world, the capacity of planes is limited. In addition, the recent decade has seen the rapid development of controlling the uncertainty in the production scheduling configurations along with proposing novel solution approaches. This paper proposes a new mathematical model via strong recent meta-heuristics planning. This study firstly develops and coordinates the integrated air transportation and production scheduling problem with time windows and due date time in Fuzzy environment to minimize the total cost. Since the problem is NP-hard, we use four meta-heuristics along with some new procedures and operators to solve the problem. The algorithms are divided into two groups: traditional and recent ones. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) as traditional algorithms, also Keshtel Algorithm (KA) and Virus Colony Search (VCS) as the recent ones are utilized in this study. In addition, by using Taguchi experimental design, the algorithm parameters are tuned. Besides, to study the behavior of the algorithms, different problem sizes are generated and the results are compared and discussed.
Amir-Mohammad Golmohammadi, Mahboobeh Honarvar, Hasan Hosseini-Nasab, Reza Tavakkoli-Moghaddam,
Volume 29, Issue 2 (IJIEPR 2018)
Abstract
The fundamental function of a cellular manufacturing system (CMS) is based on definition and recognition of a type of similarity among parts that should be produced in a planning period. Cell formation (CF) and cell layout design are two important steps in implementation of the CMS. This paper represents a new nonlinear mathematical programming model for dynamic cell formation that employs the rectilinear distance notion to determine the layout in the continuous space. In the proposed model, machines are considered unreliable with a stochastic time between failures. The objective function calculates the costs of inter and intra-cell movements of parts and the cost due to the existence of exceptional elements (EEs), cell reconfigurations and machine breakdowns. Due to the problem complexity, the presented mathematical model is categorized in NP-hardness; thus, a genetic algorithm (GA) is used for solving this problem. Several crossover and mutation strategies are adjusted for GA and parameters are calibrated based on Taguchi experimental design method. The great efficiency of the proposed GA is then demonstrated via comparing with particle swarm optimization (PSO) and the optimum solution via GAMS considering several small/medium and large-sized problems.
Alireza Fallah-Tafti, Mohammad Ali Vahdat Zad,
Volume 29, Issue 2 (IJIEPR 2018)
Abstract
In this article, we propose a special case of two-echelon location-routing problem (2E-LRP) in cash-in-transit (CIT) sector. To tackle this realistic problem and to make the model applicable, a rich LRP considering several existing real-life variants and characteristics named BO-2E-PCLRPSD-TW including different objective functions, multiple echelons, multiple periods, capacitated vehicles, distribution centers and automated teller machines (ATMs), different type of vehicles in each echelon, single-depot with different time windows is presented. Since, routing plans in the CIT sector ought to be safe and efficient, we consider the minimization of total transportation risk and cost simultaneously as objective functions. Then, we formulate such complex problem in mathematical mixed integer linear programming (MMILP). To validate the presented model and the formulation and to solve the problem, the latest version of ε-constraint method namely AUGMECON2 is applied. This method is especially efficient for solving multi objective integer programing (MOIP) problems and provides the exact Pareto fronts. Results substantiate the suitability of the model and the formulation.
Mojtaba Hamid, Mahdi Hamid, Mohammad Mahdi Nasiri, Mahdi Ebrahimnia,
Volume 29, Issue 2 (IJIEPR 2018)
Abstract
Surgical theater is one of the most expensive hospital sources that a high percentage of hospital admissions are related to it. Therefore, efficient planning and scheduling of the operating rooms (ORs) is necessary to improve the efficiency of any healthcare system. Therefore, in this paper, the weekly OR planning and scheduling problem is addressed to minimize the waiting time of elective patients, overutilization and underutilization costs of ORs and the total completion time of surgeries. We take into account the available hours of ORs and the surgeons, legal constraints and job qualification of surgeons, and priority of patients in the model. A real-life example is provided to demonstrate the effectiveness and applicability of the model and is solved using ε-constraint method in GAMS software. Then, data envelopment analysis (DEA) is employed to obtain the best solution among the Pareto solutions obtained by ε-constraint method. Finally, the best Pareto solution is compared to the schedule used in the hospitals. The results indicate the best Pareto solution outperforms the schedule offered by the OR director.
Mahdi Karbasian, Maryam Mohammadi, Mohammad Mortazavi,
Volume 29, Issue 2 (IJIEPR 2018)
Abstract
Reliability allocation has an essential connection to design for reliability and is an important activity in the product design and development process. In determining the reliability of subsystems or components on the basis of goal reliability, attention must be paid to failure effect, failure information, and improvement opportunities based upon real potentials for reliability improvement. In the light of the fact that ignoring dependent failures inflicts irreversible damage on systems, and that redundant systems are vulnerable to Common Cause Failure (CCF) as well as independent failure, attention must be paid not only to components’ independent failure information, but also to CCF information in conducting reliability allocation for such systems. To consider improved failure rate alone cannot ensure the achievement of the goal reliability in question, because if the CCF occurrence exceeds a certain limit, the system’s reliability will certainly fail to match the goal reliability. This paper is an attempt to develop a method for reliability allocation of series-parallel systems by considering CCF, in such a way that potentials and priorities of reliability improvement are taken into consideration. The proposed method consists of four stages: 1) adding a series component to the redundant system in order to investigate CCF, 2) conducting reliability allocation for series components and the redundant system, 3) conducting reliability allocation for redundant system components, and 4) analyzing the failure rate of system components. The proposed method is run for water pumping systems and the results are evaluated. In this method, in addition to the improved failure rate of system components, the improved rate of CCF is computed, too. This proves instrumental and crucial for system designers in feasibility studies and conceptual design.
Arezoo Jahani, Parastoo Mohammadi, Hamid Mashreghi,
Volume 29, Issue 2 (IJIEPR 2018)
Abstract
Innovation & Prosperity Fund (IPfund) in Iran as a governmental organization aims to develop new technology-based firms (NTBF) by its available resources through financing these firms. The innovative projects which refer to IPfund for financing are in a stage which can receive both fixed rate facilities and partnership in the projects, i.e. profit loss sharing (PLS). Since this fund must protect its initial and real value of its capital against inflation rate, therefore, this study aims to examine the suitable financing methods with considering risk. For this purpose we study on risk assessment models to see how to use risk adjusted net present value for knowledge based projects. On this basis, the NPV of a project has been analyzed by taking into account the risk variables (sales revenue and the cost of fixed investment) and using Monte Carlo simulation. The results indicate that in most cases for a project, the risk adjusted NPV in partnership scenario is more than the other scenario. In addition to, partnership in projects which demand for industrial production facilities is preferable for the IPfund than projects calling for working capital.
Sasan Khalifehzadeh, Mohammad Bagher Fakhrzad,
Volume 29, Issue 3 (IJIEPR 2018)
Abstract
Abstract
Production and distribution network (PDN) planning in multi-stage status is commonly complex. These conditions cause significant amount of uncertainty relating to demand and lead time. In this study, we introduce a PDN to deliver the products to customers in the least time and optimize the total cost of the network, simultaneously. The proposed network is four stage PDN including suppliers, producers, potential entrepots, retailers and customers with multi time period horizon with allowable shortage. A mixed integer programming model with minimizing total cost of the system and minimizing total delivery lead time is designed. We present a novel heuristic method called selective firefly algorithm (SFA) in order to solve several sized especially real world instances. In SFA, each firefly recognizes all better fireflies with more brightness and analyses its brightness change before moving, tacitly. Then, the firefly that makes best change is selected and initial firefly moves toward the selected firefly. Finally, the performance of the proposed algorithm is examined with solving several sized instances. The results indicate the adequate performance of the proposed algorithm.
Ali Vaysi, Abbas Rohani, Mohammad Tabasizadeh, Rasool Khodabakhshian, Farhad Kolahan,
Volume 29, Issue 3 (IJIEPR 2018)
Abstract
Nowadays, the CNC machining industry uses FMEA approach to improve performance, reduce component failure, and downtime of the machines. FMEA method is one of the most useful approach for the maintenance scheduling and consequently improvement of the reliability. This paper presents an approach to prioritize and assessment the failures of electrical and control components of CNC lathe machine. In this method, the electrical and control components were analyzed independently for every failure mode according to RPN. The results showed that the conventional method by means of a weighted average, generates different RPN values for the subsystems subjected to the study. The best result for Fuzzy FMEA obtained for the 10-scale and centroid defuzzification method. The Fuzzy FMEA sensitivity analysis showed that the subsystem risk level is dependent on O, S, and D indices, respectively. The result of the risk clustering showed that the failure modes can be clustered into three risk groups and a similar maintenance policy can be adopted for all failure modes placed in a cluster. Also, The prioritization of risks could also help the maintenance team to choose corrective actions consciously. In conclusion, the Fuzzy FMEA method was found to be suitably adopted in the CNC machining industry. Finally, this method helped to increase the level of confidence on CNC lathe machine.
Mohammad Mehdi Dehdar, Mustafa Jahangoshai Rezaee, Marzieh Zarinbal, Hamidreza Izadbakhsh,
Volume 29, Issue 4 (IJIEPR 2018)
Abstract
Human-based quality control reduces the accuracy of this process. Also, the speed of decision making in some industries is very important. For removing these limitations in human-based quality control, in this paper, the design of an expert system for automatic and intelligent quality control is investigated. In fact, using an intelligent system, the accuracy in quality control is increased. It requires the knowledge of experts in quality control and design of expert systems based on the knowledge and information provided by human and equipment. For this purpose, Fuzzy Inference System (FIS) and Image Processing approach are integrated. In this expert system, the input information is the images of the products and the results of processing on images for quality control are as output. At first, they may be noisy images; the pre-processing is done and then a fuzzy system is used to be processed. In this fuzzy system, according to the images, the rules are designed to extract the specific features that are required. At second, after the required attributes are extracted, the control chart is used in terms of quality. Furthermore, the empirical case study of copper rods industry is presented to show the abilities of the proposed approach.
Zahra Touni, Ahmad Makui, Emran Mohammadi,
Volume 30, Issue 1 (IJIEPR 2019)
Abstract
Financial decision-making is the principal part of any decisions hence great efforts are done to improve the methods to assess and analyze the stock in financial markets as a part of the financial decision. This paper addresses the stock selection by discovering investor's utility function .Investors in the Stock Exchange consider diverse criteria to buy shares and bonds. Due to the criteria development in stock selection, understanding the investor's behavior by a consultant is a prominent issue. Recognizing an exclusive utility function according to the characteristics of the investors facilitates acquiring each share's value for the decision maker (DM) when it is required. In this study, UTASTAR method is used to estimate the marginal value function, using 3 appropriate criteria (risk, return, liquidity) and finally fit out the total utility function. It provides the opportunity to make a rational decision fit to investor's mentality and allowing their ranking, prioritization, selection or classification. The ranking of the options is as compatible as possible to the original one. The method is applied to an example from Iran Stock Exchange.
Hossein Jandaghi, Ali Divsalar, Mohammad Mahdi Paydar,
Volume 30, Issue 1 (IJIEPR 2019)
Abstract
In this research, a new bi-objective routing problem is developed in which a conventional vehicle routing problem with time windows (VRPTW) is considered with environmental impacts and heterogeneous vehicles. In this problem, minimizing the fuel consumption (liter) as well as the length of the routes (meter) are the main objectives. Therefore, a mathematical bi-objective model is solved to create Pareto's solutions. The objectives of the proposed mathematical model are to minimize the sum of distance cost as well as fuel consumption and Co2 emission. Then, the proposed Mixed-Integer Linear Program (MILP) is solved using the ε-constraint approach Furthermore, numerical tests performed to quantify the benefits of using a comprehensive goal function with two different objectives. Managerial insights and sensitivity analysis are also performed to show how different parameters of the problem affect the computational speed and the solutions’ quality.
Sareh Goli, Mohammadali Asadi,
Volume 30, Issue 2 (IJIEPR 2019)
Abstract
In the study of the reliability of systems in reliability engineering, it has been defined several measures in the reliability and survival analysis literature. The reliability function, the mean residual lifetime and the hazard rate are helpful tools to analyze the maintenance policies and burn-in. In this paper, we consider a network consisting of n components having the property that the network has two states up and down (connected and disconnected). Suppose that the network is subject to shocks that each may cause the component failures. We further suppose that the number of failures at each shock follows a truncated binomial distribution and the process of shocks is nonhomogeneous Poisson process. This paper investigates the reliability function, the mean residual lifetime and the hazard rate of the network under shock model. An example and illustrative graph is also provided.
Ebrahim Asadi-Gangraj, Fatemeh Bozorgnezhad, Mohammad Mahdi Paydar,
Volume 30, Issue 2 (IJIEPR 2019)
Abstract
In many real scheduling situations, it is necessary to deal with the worker assignment and job scheduling together. However, in traditional scheduling problems, only the machine is assumed to be a constraint and there isn’t any constraint about workers. This assumption could be due to the lower cost of workers compared to machines or the complexity of workers' assignment problems. This research proposes a flexible flow shop scheduling problem with two simultaneous issues: finding the best worker assignment, and solving the corresponding scheduling problem. We present a mathematical model that extends flexible flow shop scheduling problem to admit the worker assignment. Due to the NP-hardness of the research problem, two approximation approaches based on particle swarm optimization, named PSO and SPSO, are applied to minimize the makespan. The experimental results show that the proposed algorithms can efficiently minimize the makespan but the SPSO generates better solutions especially for large-size problems.
Mohmmad Anvar Adibhesami, Ahmad Ekhlassi, Ali Mohammad Mosadeghrad, Amirhossein Mohebifar,
Volume 30, Issue 2 (IJIEPR 2019)
Abstract
The CPM (critical path method) technique is to search out the longest path to try and do activities, so as to compress and cut back the time it takes for a project, which finally ends up inside the creation of an identical and intensive network of activities inside the targeted work. This formal random simulation study has been recognized as a remedy for the shortcomings that are inherent to the classic critical path technique (CPM) project analysis. Considering the importance of time, the cost of activities within the network, and rising the calculation of the critical path during this study, Critical Path technique has been applied to improve critical routing intelligence. This study, by simulating and analyzing dragonfly's splotched and regular patterns, has obtained the precise algorithm of attainable paths with the smallest amount cost and time for every activity. This has been done to put down the restrictions and enhance the computing potency of classic CPM analysis. The simulation results of using Dragonfly Algorithm (DA) in CPM, show the longest path in shortest time with the lowest cost. This new answer to CPM network analysis can provide project management with a convenient tool.
Mohammad Saber Fallah Nezhad, Samrad Jafarian-Namin, Alireza Faraz,
Volume 30, Issue 4 (IJIEPR 2019)
Abstract
The number of nonconforming items in a sample is monitored using the fraction defective known as the np-chart. The performance of the np-chart in Phase II depends on the accuracy of the estimated parameter in Phase I. Although taking large sample sizes ensures the accuracy of the estimated parameter, it can be impractical for attributes in some cases. Recently, the traditional c-chart and the np-chart with some adjustments have been studied to guarantee the in-control performance. Due to technology progresses, researchers have faced high-quality processes with a very low rate of nonconformity, for which traditional control charts are inadequate. To ameliorate such inaccuracy, this study develops a new method for designing the np-chart, such that the in-control performance is guaranteed with a pre-defined probability. The proposed method uses Cornish-Fisher expansions and the bootstrap method to guarantee the desired conditional in-control average run length. Through a simulation study, this study shows that the proposed adjustments improve the np-charts’ in-control performance.
Amir-Mohammad Golmohammadi, Mahboobeh Honarvar, Guangdong Guangdong, Hasan Hosseini-Nasab,
Volume 30, Issue 4 (IJIEPR 2019)
Abstract
There is still a great deal of attention in cellular manufacturing systems and proposing capable metaheuristics to better solve these complicated optimization models. In this study, machines are considered unreliable that life span of them follows a Weibull distribution. The intra and inter-cell movements for both parts and machines are determined using batch sizes for transferring parts are related to the distance traveled through a rectilinear distance. The objectives minimize the total cost of parts relocations and maximize the processing routes reliability due to alternative process routing. To solve the proposed problem, Genetic Algorithm (GA) and two recent nature-inspired algorithms including Keshtel Algorithm (KA) and Red Deer Algorithm (RDA) are employed. In addition, the main innovation of this paper is to propose a novel hybrid metaheuristic algorithm based on the benefits of aforementioned algorithms. Some numerical instances are defined and solved by the proposed algorithms and also validated by the outputs of exact solver. A real case study is also utilized to validate the proposed solution and modeling algorithms. The results indicate that the proposed hybrid algorithm is more appropriate than the exact solver and outperforms the performance of individual ones.
Mohammad Sarvar Masouleh, Amir Azizi,
Volume 30, Issue 4 (IJIEPR 2019)
Abstract
The present research aims at investigating feasible improvements by determining optimal number of stations and required workforce using a simulation system, with the ultimate goal of reaching optimal throughput while respecting the problem constraints in an attempt to achieve maximum feasible performance in terms of production rate. For this purpose, similar research works were investigated by reviewing the relevant pieces of the literature on simulation model, car signoff station, and techniques for optimizing the station, and the model of the car signoff unit was designed using data gathering tools, existing documents, and actual observations. Subsequently, the model was validated by means of descriptive statistics and analysis of variance (ANOVA). Furthermore, available data was analyzed using ARENA and SPSS software tools. In a next step, potential improvements of the unit were identified and the model was evaluated accordingly. The results indicated that some 80% of the existing problems could be addressed by appropriately planning for human resources, on-time provision of the required material at reworking units, and minimization of transportation at the stations that contributed the most to the working queue. Thus, the waiting time per station could be minimized while increasing the production rate.
Kosar Omrani, Abdul Sattar Safaei, Mohammad Mahdi Paydar, Maryam Nikzad,
Volume 31, Issue 1 (IJIEPR 2020)
Abstract
Regarding population growth and prompt development in developing countries, municipal solid waste management is always a great challenge for governments. Waste to energy conversion is an efficient approach with respect to overcoming not only the challenge of municipal solid waste management but also environmental challenges related to energy consumption like global warming and fossil fuel depletion. One of the substantial problems throughout the implementation of waste to energy approach is process selection. The selected process should be technically feasible and should have a high level of compliance with environmental standards. Owing to an inevitable significance of process selection, this paper focuses on defining the best process by relying on multi-criteria decision-making tools and network analytic process. Considering the effective parameters such as cost, efficiency in material diversity, productivity rate, energy consumption, pollutant emissions, toxic substances, and process time, the result indicates that the physico-chemical process is superior process for pretreatment of material. |