Mohammad Yaseliani, Majid Khedmati,
Volume 34, Issue 1 (3-2023)
Abstract
Diagnosis of diseases is a critical problem that can help for more accurate decision-making regarding the patients’ health and required treatments. Machine learning is a solution to detect and understand the symptoms related to heart disease. In this paper, a logistic regression model is proposed to predict heart disease based on a dataset with 299 people and 13 variables and to evaluate the impact of different predictors on the outcome. In this regard, at first, the effect of each predictor on the precise prediction of the outcome has been evaluated and analyzed by statistical measurements such as AIC scores and p-values. The logit models of different predictors have also been analyzed and compared to select the predictors with the highest impact on heart disease. Then, the combined model that best fits the dataset has been determined using two statistical approaches. Based on the results, the proposed model predicts heart disease with a sensitivity and specificity of 84.21% and 90.38%, respectively. Finally, using normal probability density curves, the likelihood ratios have been established based on classes 1 and 0. The results show that the likelihood ratio classifier performs as satisfactorily as the logistic regression model.
Arifa Khan, Saravanan P,
Volume 35, Issue 3 (9-2024)
Abstract
Optimizing production in the plastic extrusion industry is a pivotal task for small scale industries. To enhance the efficiency in today’s competitive market being a small-scale manufacturer over their peers is challenging. With the limited resources, having constraints on manpower, capital, space, often facing fluctuations in demand and production, simultaneously maintaining high quality became very important for the success. Among the plethora of KPIS used in manufacturing, Overall Equipment Effectiveness (OEE) stands out as corner stone. In this study, we collected real-world data from a plastic extrusion company. i.e., an HDPE Pipe manufacturing company. It serves as the backdrop for our study, this is based on the plastic extrusion sector and set out a goal of enhancing OEE through a comparative investigation of various ML models. To forecast and estimate OEE values, we used various Machine Learning models and examine each algorithm’s performance using metrics like Mean Squared Error (MSE) and model comparisons using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), creating a comprehensive picture of each algorithm’s strength which enables the small businesses to make informed decisions and empowers them to stay agile and adapt to the changes in the manufacturing environment.