Search published articles


Showing 4 results for Ant Colony Optimization


Volume 21, Issue 3 (9-2010)
Abstract

  In this paper an Ant Colony (ACO) algorithm is developed to solve aircraft recovery while considering disrupted passengers as part of objective function cost. By defining the recovery scope, the solution always guarantees a return to the original aircraft schedule as soon as possible which means least changes to the initial schedule and ensures that all downline affects of the disruption are reflected. Defining visibility function based on both current and future disruptions is one of our contributions in ACO which aims to recover current disruptions in a way that cause less consequent disruptions. Using a real data set, the computational results indicate that the ACO can be successfully used to solve the airline recovery problem .


M. Yaghini, M. Momeni, M. Sarmadi ,
Volume 22, Issue 1 (3-2011)
Abstract

  The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, two hybrid efficient and effective metaheuristic algorithms are developed. The simulated annealing and ant colony optimization algorithms are combined with the local search methods. To evaluate the proposed algorithms, the standard problems with different sizes are used. The algorithms parameters are tuned by design of experiments approach and the most appropriate values for the parameters are adjusted. The performance of the proposed algorithms is analyzed by quality of solution and CPU time measures. The results show high efficiency and effectiveness of the proposed algorithms .


Mir Saber Salehi Mir, Javad Rezaeian,
Volume 27, Issue 1 (3-2016)
Abstract

This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machine is proportional to the actual processing time of the already processed jobs on the corresponding machine, i.e., the setup time of a job is past- sequence-dependent (p-s-d). The objective is to determine jointly the jobs assigned to each machine and the order of jobs such that the total completion time (called TC) is minimized. Since that the problem is NP-hard, optimal solution for the instances of realistic size cannot be obtained within a reasonable amount of computational time using exact solution approaches. Hence, an efficient method based on ant colony optimization algorithm (ACO) is proposed to solve the given problem. The performance of the presented model and the proposed algorithm is verified by a number of numerical experiments. The related results show that ant colony optimization algorithm is effective and viable approache to generate optimal⁄near optimal solutions within a reasonable amount of computational time.



Page 1 from 1