Search published articles


Showing 3 results for Bayesian Rule

R. Farnoosh, B. Zarpak ,
Volume 19, Issue 1 (3-2008)
Abstract

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.

  In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact, a new numerically method was introduced for finding the maximum a posterior estimation by using EM-algorithm and Gaussians mixture distribution. In this algorithm, we were made a sequence of priors, posteriors were made and then converged to a posterior probability that is called the reference posterior probability. Maximum a posterior estimated can determine by the reference posterior probability which can make labeled image. This labeled image shows our segmented image with reduced noises. We presented this method in several experiments.


Rahman Farnoosh, Behnam Zarpak,
Volume 19, Issue 1 (3-2008)
Abstract

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.

  In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, we introduce a new numerically method of finding maximum a posterior estimation by using EM-algorithm and Gaussians mixture distribution. In this algorithm, we have made a sequence of priors, posteriors and they converge to a posterior probability that is called the reference posterior probability. Maximum a posterior estimated can determine by the reference posterior probability that will make labeled image. This labeled image shows our segmented image with reduced noises. We show this method in several experiments.


Mohammad Saber Fallah Nezhad,
Volume 24, Issue 4 (12-2013)
Abstract

In this research, the decision on belief (DOB) approach was employed to analyze and classify the states of uni-variate quality control systems. The concept of DOB and its application in decision making problems were introduced, and then a methodology for modeling a statistical quality control problem by DOB approach was discussed. For this iterative approach, the belief for a system being out-of-control was updated by taking new observations on a given quality characteristic. This can be performed by using Bayesian rule and prior beliefs. If the beliefs are more than a specific threshold, then the system will be classified as an out-of-control condition. Finally, a numerical example and simulation study were provided for evaluating the performance of the proposed method.

Page 1 from 1