Showing 21 results for Constraint
Meysam Zareiee, Abbas Dideban, Ali A. Orouji ,
Volume 22, Issue 2 (6-2011)
Abstract
Discrete event system, Supervisory control, Petri Net, Constraint |
This paper presents a method to manage the time in a manufacturing system for obtaining an optimized model. The system in this paper is modeled by the timed Petri net and the optimization is performed based on the structural properties of Petri nets. In a system there are some states which are called forbidden states and the system must be avoided from entering them. In Petri nets, this avoidance can be performed by using control places. But in a timed Petri net, using control places may lead to decreasing the speed of systems. This problem will be shown on a manufacturing system. So, a method will be proposed for increasing the speed of the system without using control places .
Abbas Dideban, Maysam Zareiee, Ali A. Orouji, Hassan Rezaei Soleymanpour ,
Volume 24, Issue 1 (2-2013)
Abstract
This paper deals with the problem of forbidden states in discrete event systems modeled by Petri Net. To avoid the forbidden states, some constraints which are called Generalized Mutual Exclusion Constraints can be assigned to them. Enforcing these constraints on the system can be performed using control places. However, when the number of these constraints is large, a large number of control places must be connected to the system which complicates the model of controller. In this paper, the objective is to propose a general method for reducing the number of the mentioned constraints and consequently the number of control places. This method is based on mixing some constraints for obtaining a constraint verifying all of them which is performed using the optimization algorithms. The obtained controller after reducing the number of the control places is maximally permissive.
Mohammad Reisi, Ghasem Moslehi,
Volume 24, Issue 4 (12-2013)
Abstract
Increasing competition in the air transport market has intensified active airlines’ efforts to keep their market share by attaching due importance to cost management aimed at reduced final prices. Crew costs are second only to fuel costs on the cost list of airline companies. So, this paper attempts to investigate the cockpit crew pairing problem. The set partitioning problem has been used for modelling the problem at hand and, because it is classified in large scale problems, the column generation approach has been used to solve LP relaxation of the set partitioning model. Our focus will be on solving the column generation sub-problem. For this purpose, two algorithms, named SPRCF and SPRCD, have been developed based on the shortest path with resource constraint algorithms. Their efficiency in solving some problem instances has been tested and the results have been compared with those of an algorithm for crew pairing problem reported in the literature. Results indicate the high efficiency of the proposed algorithms in solving problem instances with up to 632 flight legs in a reasonable time.
Iraj Mahdavi, Behrang Bootaki, Mohammd Mahdi Bootaki, Paydar,
Volume 25, Issue 1 (2-2014)
Abstract
Generally, human resources play an important role in manufacturing systems as they can affect the work environment. One of the most important factors affecting the human resources is being an interactional interest among the workers in the workshops. If the workers in a manufacturing cell have the highest surface of the interactional interest level, it causes a significant raise in coordination and cooperation indicators and in long time periods. In this paper, a new concept of being an interactional interest between workers in a manufacturing cell besides the ability to work with its machines is proposed and a bi-objective mathematical model to carry out this new point of view in cellular manufacturing systems is presented. Applying the ε-constraint method as an optimization tool for multi-objective mathematical programming, a comprehensive numerical example is solved to exhibit the capability of the presented model.
Arash Nobari, Amir Saman Kheirkhah, Maryam Esmaeili,
Volume 27, Issue 4 (12-2016)
Abstract
Flexible and dynamic supply chain network design problem has been studied by many researchers during past years. Since integration of short-term and long-term decisions in strategic planning leads to more reliable plans, in this paper a multi-objective model for a sustainable closed-loop supply chain network design problem is proposed. The planning horizon of this model contains multiple strategic periods so that the structure of supply chain can be changed dynamically during the planning horizon. Furthermore, in order to have an integrated design, several short-term decisions are considered besides strategic network design decision. One of these short-term decisions is determining selling price and buying price in the forward and reverse logistics of supply chain, respectively. Finally, an augmented e-constraint method is used to transform the problem to a single-objective model and an imperialist competitive algorithm is presented to solve large scale problems. The results’ analysis indicates the efficiency of the proposed model for the integrated and dynamic supply chain network design problem.
Parham Azimi, Naeim Azouji,
Volume 28, Issue 4 (11-2017)
Abstract
In this paper a novel modelling and solving method has been developed to address the so-called resource constrained project scheduling problem (RCPSP) where project tasks have multiple modes and also the preemption of activities are allowed. To solve this NP-hard problem, a new general optimization via simulation (OvS) approach has been developed which is the main contribution of the current research. In this approach, the mathematical model of the main problem is relaxed and solved then the optimum solutions were used in the corresponding simulation model to produce several random feasible solutions for the main problem. Finally, the most promising solutions were selected as the initial population of a genetic Algorithm (GA). To test the efficiency of the problem, several test problems were solved by the proposed approach and according to the results, the proposed concept has a very good performance to solve such a complex combinatoral problem. Also, the concept could be easily applied for other similar combinatorics.
Ghasem Moslehi, Omolbanin Mashkani,
Volume 29, Issue 1 (3-2018)
Abstract
In single machine scheduling problems with availability constraints, machines are not available for one or more periods of time. In this paper, we consider a single machine scheduling problem with flexible and periodic availability constraints. In this problem, the maximum continuous working time for each machine increases in a stepwise manner with two different values allowed. Also, the duration of unavailability for each period depends on the maximum continuous working time of the machine in that same period, again with two different values allowed. The objective is to minimize the number of tardy jobs. In the first stage, the complexity of the problem is investigated and a binary integer programming model, a heuristic algorithm and a branch-and-bound algorithm are proposed in a second stage. Computational results of solving 1680 sample problems indicate that the branch-and-bound algorithm is capable of not only solving problems of up to 20 jobs but also of optimally solving 94.76% of the total number of problems. Based on numerical results obtained, a mean average error of 2% is obtained for the heuristic algorithm.
Alireza Fallah-Tafti, Mohammad Ali Vahdat Zad,
Volume 29, Issue 2 (6-2018)
Abstract
In this article, we propose a special case of two-echelon location-routing problem (2E-LRP) in cash-in-transit (CIT) sector. To tackle this realistic problem and to make the model applicable, a rich LRP considering several existing real-life variants and characteristics named BO-2E-PCLRPSD-TW including different objective functions, multiple echelons, multiple periods, capacitated vehicles, distribution centers and automated teller machines (ATMs), different type of vehicles in each echelon, single-depot with different time windows is presented. Since, routing plans in the CIT sector ought to be safe and efficient, we consider the minimization of total transportation risk and cost simultaneously as objective functions. Then, we formulate such complex problem in mathematical mixed integer linear programming (MMILP). To validate the presented model and the formulation and to solve the problem, the latest version of ε-constraint method namely AUGMECON2 is applied. This method is especially efficient for solving multi objective integer programing (MOIP) problems and provides the exact Pareto fronts. Results substantiate the suitability of the model and the formulation.
Mojtaba Hamid, Mahdi Hamid, Mohammad Mahdi Nasiri, Mahdi Ebrahimnia,
Volume 29, Issue 2 (6-2018)
Abstract
Surgical theater is one of the most expensive hospital sources that a high percentage of hospital admissions are related to it. Therefore, efficient planning and scheduling of the operating rooms (ORs) is necessary to improve the efficiency of any healthcare system. Therefore, in this paper, the weekly OR planning and scheduling problem is addressed to minimize the waiting time of elective patients, overutilization and underutilization costs of ORs and the total completion time of surgeries. We take into account the available hours of ORs and the surgeons, legal constraints and job qualification of surgeons, and priority of patients in the model. A real-life example is provided to demonstrate the effectiveness and applicability of the model and is solved using ε-constraint method in GAMS software. Then, data envelopment analysis (DEA) is employed to obtain the best solution among the Pareto solutions obtained by ε-constraint method. Finally, the best Pareto solution is compared to the schedule used in the hospitals. The results indicate the best Pareto solution outperforms the schedule offered by the OR director.
Rana Imannezhad, Soroush Avakh Darestani,
Volume 29, Issue 3 (9-2018)
Abstract
Project scheduling problem with resources constraint is a well-known problem in the field of project management. The applicable nature of this problem has caused the researchers’ tendency to it. In this study, project scheduling with resource constraints and the possibility of interruption of project activities as well as renewable resources constraint has been also applied along with a case study on construction projects. Construction projects involve complex levels of work. Making wrong decisions in selecting methods and how to allocate the necessary resources such as manpower and equipment can lead to the results such as increasing the predetermined cost and time. According to NP-Hard nature of the problem, it is very difficult or even impossible to obtain optimal solution using optimization software and traditional methods. In project scheduling using CPM method, critical path is widely used; however, in this method, the resource constraints is not considered. Project Scheduling seek proper sequence for doing the project activities. This study has been conducted using Bees meta-heuristic algorithm, with the aim of optimizing the project completion time. Finally, the results obtained from three algorithms and GAMS software shows that this algorithm has better performance than and the solution among the other algorithms and has achieved the accurate solutions.
Bahareh Vaisi, Hiwa Farughi, Sadigh Raissi,
Volume 29, Issue 3 (9-2018)
Abstract
This paper focused on scheduling problems arising in a two-machine, identical parts robotic cell configured in a flow shop. Through current research, a mathematical programming model on minimizing cycle time as well operational cost, considering availability of robotic cell as a constraint, is proposed to search for the optimum allocation and schedule of operations to these two machines. Two solution procedures, including weighted sum method and ∊-constraint method are provided. Based on the weighted sum method, like some previous studies, sensitivity analysis on model parameters were done and the optimum solutions were compared with previous results, while the ∊-constraint method can find the Pareto optimal solutions for problems with up to 18 operations in a reasonable time.
Fatemeh Bayatloo, Ali Bozorgi-Amiri,
Volume 29, Issue 4 (12-2018)
Abstract
Development of every society is incumbent upon energy sector’s technological and economic effectiveness. The electricity industry is a growing and needs to have a better performance to effectively cover the demand. The industry requires a balance between cost and efficiency through careful design and planning. In this paper, a two-stage stochastic programming model is presented for the design of electricity supply chain networks. The proposed network consists of power stations, transmission lines, substations, and demand points. While minimizing costs and maximizing effectiveness of the grid, this paper seeks to determine time and location of establishing new facilities as well as capacity planning for facilities. We use chance constraint method to satisfy the uncertain demand with high probability. The proposed model is validated by a case study on Southern Khorasan Province’s power grid network, the computational results show that the reliability rate is a crucial factor which greatly effects costs and demand coverage.
Hamiden Abd Elwahed Khalifa, El- Saed Ebrahim Ammar,
Volume 30, Issue 1 (3-2019)
Abstract
Fully fuzzy linear programming is applied to water resources management due to its close connection with human life, which is considered to be of great importance. This paper investigates the decision-making concerning water resources management under uncertainty based on two-stage stochastic fuzzy linear programming. A solution method for solving the problem with fuzziness in relations is suggested to prove its applicability. The purpose of the method is to generate a set of solutions for water resources planning that helps the decision-maker make a tradeoff between economic efficiency and risk violation of the constraints. Finally, a numerical example is given and is approached by the proposed method.
Hossein Jandaghi, Ali Divsalar, Mohammad Mahdi Paydar,
Volume 30, Issue 1 (3-2019)
Abstract
In this research, a new bi-objective routing problem is developed in which a conventional vehicle routing problem with time windows (VRPTW) is considered with environmental impacts and heterogeneous vehicles. In this problem, minimizing the fuel consumption (liter) as well as the length of the routes (meter) are the main objectives. Therefore, a mathematical bi-objective model is solved to create Pareto's solutions. The objectives of the proposed mathematical model are to minimize the sum of distance cost as well as fuel consumption and Co2 emission. Then, the proposed Mixed-Integer Linear Program (MILP) is solved using the ε-constraint approach Furthermore, numerical tests performed to quantify the benefits of using a comprehensive goal function with two different objectives. Managerial insights and sensitivity analysis are also performed to show how different parameters of the problem affect the computational speed and the solutions’ quality.
Seyedhamed Mousavipour, Hiwa Farughi, Fardin Ahmadizar,
Volume 30, Issue 3 (9-2019)
Abstract
Sequence dependent set-up times scheduling problems (SDSTs), availability constraint and transportation times are interesting and important issues in production management, which are often addressed separately. In this paper, the SDSTs job shop scheduling problem with position-based learning effects, job-dependent transportation times and multiple preventive maintenance activities is studied. Due to learning effects, jobs processing times are not fixed during plan horizon and each machine has predetermined number of preventive maintenance activities. A novel mixed integer linear programming model is proposed to formulate the problem for minimizing Make Span. Owing to the high complexity of the problem; we applied Grey Wolf Optimizer (GWO) and Invasive Weed Optimizer (IWO) to find nearly optimal solutions for medium and large instances. Finally, the computational Results are provided for evaluating the performance and effectiveness of the proposed solution approaches.
Parviz Fattahi, Zohreh Shakeri Kebria,
Volume 31, Issue 1 (3-2020)
Abstract
In this paper, a new model of hub locating has been solved considering reliability and importance of flow congestion on hub nodes in a dynamic environment. Each of nodes considered as hubs and their communication paths with other non-hubs nodes have specific reliability. In order to reduce input flow to any hub and avoid creation unsuitable environmental and traffic conditions in that area, efficiency capacity is allocated to each hub, which is subject to a penalty in case of exceeding this amount. Another capability of this model is the ability of deciding whether hubs are active or inactive in each period, so hub facilities can be established or closed due to different conditions (such as changes in demand, legislative, etc.). The model is non-linear and bi-objective that the first goal is reducing transportation costs, hub rental fees and extra flow congestion penalties on hub nodes and the second goal is to increase the minimum designed network reliability. After linearization of the model, using ε-constraint method, optimal boundary is obtained. Also, to demonstrate the performance of the model, we use IAD dataset for solving problem. To evaluate the model, sensitivity analysis is presented for some of important parameters of the model.
Parham Azimi, Shahed Sholekar,
Volume 32, Issue 1 (1-2021)
Abstract
According to the real projects’ data, activity durations are affected by numerous parameters. In this research, we have developed a multi-resource multi objective multi-mode resource constrained scheduling problem with stochastic durations where the mean and the standard deviation of activity durations are related to the mode in which each activity is performed. The objective functions of model were to minimize the net present value and makespan of the project. A simulation-based optimization approach was used to handle the problem with several stochastic events. This feature helped us to find several solutions quickly while there was no need to take simplification assumptions. To test the efficiency of the proposed algorithm, several test problems were taken from the PSPLIB directory and solved. The results show the efficiency of the proposed algorithm both in quality of the solutions and the speed.
Hadi Mokhtari, Aliakbar Hasani, Ali Fallahi,
Volume 32, Issue 2 (6-2021)
Abstract
One of the basic assumptions of classical production-inventory models is that all products are of perfect quality. However, in real manufacturing situations, the production of defective items is inevitable, and a fraction of the items produced may be naturally imperfect. In fact, items may be damaged due to production and/or transportation conditions in the manufacturing process. On the other hand, some reworkable items exist among imperfect items that can be made perfect by additional processing. In addition, the classical production-inventory models assume that there is only one product in the system and that there is an unlimited amount of resources. However, in many practical situations, several products are produced and there are some constraints related to various factors such as machine capacity, storage space, available budget, number of allowable setups, etc. Therefore, we propose new constrained production-inventory models for multiple products where the manufacturing process is defective and produces a fraction of imperfect items. A percentage of defective items can be reworked, and these products go through the rework process to become perfect and return to the consumption cycle. The goal is to determine economic production quantities to minimize the total cost of the system. The analytical solutions are each derived separately by Lagrangian relaxation method, and a numerical example is presented to illustrate and discuss the procedure. A sensitivity analysis is performed to investigate how the variation in the inputs of the models affects the total cost of the inventory system. Finally, some research directions for future works are discussed.
Vahid Razmjoei, Iraj Mahdavi, Nezam Mahdavi-Amiri, Mohammad Mahdi Paydar,
Volume 33, Issue 2 (6-2022)
Abstract
Companies and firms, nowadays, due to mounting competition and product diversity, seek to apply virtual cellular manufacturing systems to reduce production costs and improve quality of the products. In addition, as a result of rapid advancement of technology and the reduction of product life cycle, production systems have turned towards dynamic production environments. Dynamic cellular manufacturing environments examine multi-period planning horizon, with changing demands for the periods. A dynamic virtual cellular manufacturing system is a new production approach to help manufacturers for decision making. Here, due to variability of demand rates in different periods, which turns to flow variability, a mathematical model is presented for dynamic production planning. In this model, we consider virtual cell production conditions and worker flexibility, so that a proper relationship between capital and production parameters (part-machine-worker) is determined by the minimum lost sales of products to customers, a minimal inventory cost, along with a minimal material handling cost. The problems based on the proposed model are solved using LINGO, as well as an epsilon constraint algorithm.
Amir Nayeb, Esmaeil Mehdizadeh, Seyed Habib A. Rahmati,
Volume 34, Issue 2 (6-2023)
Abstract
In the field of scheduling and sequence of operations, one of the common assumptions is the availability of machines and workers on the planning horizon. In the real world, a machine may be temporarily unavailable for a variety of reasons, including maintenance activities, and the full capacity of human resources cannot be used due to their limited number and/or different skill levels. Therefore, this paper examines the Dual Resource Constrained Flexible Job Shop Scheduling Problem (DRCFJSP) considering the limit of preventive maintenance (PM). Due to various variables and constraints, the goal is to minimize the maximum completion time. In this regard, Mixed Integer Linear Programming (MILP) model is presented for the mentioned problem. To evaluate and validate the presented mathematical model, several small and medium-sized problems are randomly generated and solved using CPLEX solver in GAMS software. Because the solving of this problem on a large scale is complex and time-consuming, two metaheuristic algorithms called Genetic Algorithm (GA) and Vibration Damping Optimization Algorithm (VDO) are used. The computational results show that GAMS software can solve small problems in an acceptable time and achieve an accurate answer, and also meta-heuristic algorithms can reach appropriate answers. The efficiency of the two proposed algorithms is also compared in terms of computational time and the value obtained for the objective function.