Search published articles


Showing 2 results for Elastic Demand

Firoozeh Kaveh, Reza Tavakkoli-Moghaddam, Amin Jamili, Maryam Eghbali,
Volume 27, Issue 4 (12-2016)
Abstract

This paper presents a bi-objective capacitated hub arc location problem with single assignment for designing a metro network with an elastic demand. In the literature, it is widely supposed that the network created with the hub nodes is complete. In this paper, this assumption is relaxed. Moreover, in most hub location problems, the demand is assumed to be static and independent of the location of hubs. However, in real life problems, especially for locating a metro hub, the demand is dependent on the utility that is proposed by each hub. By considering the elasticity of demand, the complexity of solving the problem increases. The presented model also has the ability to compute the number of trains between each pair of two hubs. The objectives of this model are to maximize the benefits of transportation and establishing the hub facilities while minimizing the total transportation time. Furthermore, the bi-objective model is converted into a single objective one by the TH method. The significance of applicability of the developed model is demonstrated by a number of numerical experiments and some sensitivity analyses on the data inspired by the Qom monorail project. Finally, the conclusion is provided.


Amin Saghaeeian, Reza Ramezanian,
Volume 28, Issue 4 (11-2017)
Abstract

This study considers pricing, production and transportation decisions in a Stackelberg game between three-stage, multi-product, multi-source and single-period supply chains called leader and follower. These chains consist of; manufacturers, distribution centers (DCs) and retailers. Competition type is horizontal and SC vs. SC. The retailers in two chains try to maximize their profit through pricing of products in different markets and regarding the transportation and production costs. A bi-level nonlinear programming model is formulated in order to represent the Stackelberg game. Pricing decisions are based on discrimination pricing rules, where we can put different prices in different markets. After that the model is reduced to single-level nonlinear programming model by replacing Karush-Kuhn-Tucker conditions for the lower level (follower) problem. Finally, a numerical example is solved in order to analyze the sensitivity of effective parameters on price and profit.



Page 1 from 1