A. Azaron , S.m. Fatemi Ghomi,
Volume 18, Issue 3 (11-2007)
Abstract
Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in accordance with the independent semi-Markov processes over the planning horizon. By using the stochastic dynamic programming, we find a dynamic path with maximum expected length from the source node to the sink node of the stochastic dynamic network. The expected value of such path can be considered as an approximation for the mean project completion time in the original dynamic PERT network.
Ali Mohaghar, Mojtaba Kashef, Ehsan Kashef Khanmohammadi,
Volume 25, Issue 2 (5-2014)
Abstract
Considering the major change occurred in business cells from plant to “chain” and the critical need to choose the best partners to form the supply chain for competing in today’s business setting, one of the vital decisions made at the early steps of constructing a business is supplier selection. Given the fact that the early decisions are inherently strategic and therefore hard and costly to change, it’s been a point of consideration for industries to select the right supplier. It’s clear that different criteria must be investigated and interfered in deciding on the best partner(s) among the alternatives. Thereupon the problem might be regarded as a multiple criteria decision making (MCDM) problem. There are a variety of techniques to solve a MCDM problem. In this paper we propose a novel technique by combination of decision making trial and evaluation laboratory and graph theory and matrix approach techniques. Eventually, the results are compared to SAW technique and discussed to come to a conclusion.