Search published articles


Showing 3 results for Integer Linear Programming

M. Kargari, Z. Rezaee, H. Khademi Zare ,
Volume 18, Issue 3 (11-2007)
Abstract

 Abstract : In this paper a meta-heuristic approach has been presented to solve lot-size determination problems in a complex multi-stage production planning problems with production capacity constraint. This type of problems has multiple products with sequential production processes which are manufactured in different periods to meet customer’s demand. By determining the decision variables, machinery production capacity and customer’s demand, an integer linear program with the objective function of minimization of total costs of set-up, inventory and production is achieved. In the first step, the original problem is decomposed to several sub-problems using a heuristic approach based on the limited resource Lagrange multiplier. Thus, each sub-problem can be solved using one of the easier methods. In the second step, through combining the genetic algorithm with one of the neighborhood search techniques, a new approach has been developed for the sub-problems. In the third step, to obtain a better result, resource leveling is performed for the smaller problems using a heuristic algorithm. Using this method, each product’s lot-size is determined through several steps. This paper’s propositions have been studied and verified through considerable empirical experiments.

 


Alireza Fallah-Tafti, Mohammad Ali Vahdat Zad,
Volume 29, Issue 2 (6-2018)
Abstract

In this article, we propose a special case of two-echelon location-routing problem (2E-LRP) in cash-in-transit (CIT) sector. To tackle this realistic problem and to make the model applicable, a rich LRP considering several existing real-life variants and characteristics named BO-2E-PCLRPSD-TW including different objective functions, multiple echelons, multiple periods, capacitated vehicles, distribution centers and automated teller machines (ATMs), different type of vehicles in each echelon, single-depot with different time windows is presented. Since, routing plans in the CIT sector ought to be safe and efficient, we consider the minimization of total transportation risk and cost simultaneously as objective functions. Then, we formulate such complex problem in mathematical mixed integer linear programming (MMILP). To validate the presented model and the formulation and to solve the problem, the latest version of ε-constraint method namely AUGMECON2 is applied. This method is especially efficient for solving multi objective integer programing (MOIP) problems and provides the exact Pareto fronts. Results substantiate the suitability of the model and the formulation.
 
Ferda Can Çeti̇nkaya, Günce Boran Yozgat,
Volume 33, Issue 2 (6-2022)
Abstract

This paper considers a customer order scheduling (COS) problem in which each customer requests a variety of products processed in a two-machine flow shop. A sequence-independent attached setup for each machine is needed before processing each product lot. We assume that customer orders are satisfied by the job-based processing approach in which the same products from different customer orders form a product lot (job). Each customer order for a product is processed as a sublot (a batch of identical items) of the product lot by applying the lot streaming (LS) idea in scheduling. We assume that all sublots of the same product must be processed together by the same machine without intermingling the sublots of other products. The completion time of a customer order is the completion time of the product processed as the last product in that order. All products in a customer order are delivered in a single shipment to the customer when the processing of all the products in that customer order is completed. We aim to find an optimal schedule with a product lots sequence and the sequence of the sublots in each job to minimize the sum of completion times of the customer orders. We have developed a mixed-integer linear programming (MILP) model and a multi-phase heuristic algorithm for solving the problem. The results of our computational experiments show that our model can solve the small-sized problem instances optimally. However, our heuristic algorithm finds optimal or near-optimal solutions for the medium- and large-sized problem instances in a short time.

Page 1 from 1