Arash Motaghedi-Larijani, Kamyar Sabri-Laghaie , Mahdi Heydari,
Volume 21, Issue 4 (12-2010)
Abstract
In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing makespan, (2) minimizing total workload, and (3) minimizing workload of the most loaded machine. As the problem belongs to the class of NP-Hard problems, a new hybrid genetic algorithm is proposed to obtain a large set of Pareto-optimal solutions in a reasonable run time. The algorithm utilizes from a local search heuristic for improving the chance of obtaining more number of global Pareto-optimal solutions. The solution method uses from a perturbed global criterion function for guiding the search direction of the hybrid algorithm. Computational experiences show that the hybrid algorithm has superior performance in contrast to previous studies .
Parviz Fattahi, Sanaz Keneshloo, Fatemeh Daneshamooz, Samad Ahmadi,
Volume 30, Issue 1 (3-2019)
Abstract
In this research a jobshop scheduling problem with an assembly stage is studied. The objective function is to find a schedule which minimizes completion time for all products. At first, a linear model is introduced to express the problem. Then, in order to confirm the accuracy of the model and to explore the efficiency of the algorithms, the model is solved by GAMS. Since the job shop scheduling problem with an assembly stage is considered as a NP-hard problem, a hybrid algorithm is used to solve the problem in medium to large sizes in reasonable amount of time. This algorithm is based on genetic algorithm and parallel variable neighborhood search. The results of the proposed algorithm are compared with the result of genetic algorithm. Computational results showed that for small problems, both HGAPVNS and GA have approximately the same performance. And in medium to large problems HGAPVNS outperforms GA.